NanoPi NEO Air

From FriendlyARM WiKi
Revision as of 06:11, 16 October 2017 by Yftan (Talk | contribs) (July-8-2017)

Jump to: navigation, search



NanoPi NEO-AIR-1.jpg
NanoPi NEO-AIR-2.jpg
NanoPi NEO-AIR-3.jpg
  • The NanoPi NEO Air is a 40 x 40mm open source ARM board for makers.It uses an Allwinner H3 Quad Core A7 processor at 1.2GHz. Its pins are compatible with the NanoPi NEO(V 1.2) and its 24-pin header is compatible with Raspberry Pi's GPIO pin headers.
  • The NanoPi NEO AIR features 512MB of 16bit wide DDR3 RAM, 8GB eMMC and one MicroSD slot. It has WiFi & Bluetooth and DVP camera interface(YUV422). The DVP camera interface can support friendlyarm's 5M-pixel camera module
  • It has enhanced power circuit design and better heat dissipation.

Hardware Spec

  • CPU: Allwinner H3, Quad-core Cortex-A7 Up to 1.2GHz
  • RAM: 512MB DDR3 RAM
  • Storage: 8GB eMMC
  • WiFi: 802.11b/g/n
  • Bluetooth: 4.0 dual mode
  • DVP Camera: 0.5mm pitch 24 pin FPC seat
  • MicroUSB: OTG and power input
  • MicroSD Slot x 1
  • Debug Serial Port: 4Pin,2.54mm pitch pin header
  • GPIO1: 2.54mm spacing 24pin,It includes UART,SPI,I2C,GPIO
  • GPIO2: 2.54mm spacing 12pin,It includes USBx2,IR,SPDIF,I2S
  • PCB Size: 40 x 40mm
  • PCB layer: 6
  • Power Supply: DC 5V/2A
  • Working Temperature: -40℃ to 80℃
  • OS/Software: u-boot, UbuntuCore, eflasher
  • Weight: 7.5g(WITHOUT Pin-headers)

Software Features


  • supports fastboot to update uboot

UbuntuCore 16.04

  • mainline kernel: Linux-4.11.2
  • rpi-monitor: check system status and information
  • npi-config: system configuration utility for setting passwords, language, timezone, hostname, SSH and auto-login,and enabling/disabling i2c, spi, serial and PWM
  • networkmanager: manage network
  • software utility: RPi.GPIO_NP to access GPIO pins
  • welcome window with basic system information and status
  • auto-login with user account "pi" with access to npi-config
  • on first system boot file system will be automatically extended.
  • supports file system auto check and repair on system boot.
  • supports FriendlyElec's NanoHat-PCM5102A
  • supports FriendlyElec's Matrix_-_2.8_SPI_Key_TFT
  • supports file transfer with Bluetooth
  • supports FriendlyElec BakeBit modules
  • supports dynamic frequency scaling and voltage regulation

Ubuntu OLED

  • supports FriendlyElec's OLED module


  • supports flashing OS image to eMMC

Debian for NAS Dock

  • supports FriendlyElec's NAS Dock

Diagram, Layout and Dimension


NanoPi NEO-AIR Layout
NanoPi NEO Air Pinout
  • GPIO Pin Description
Pin# Name Linux gpio Pin# Name Linux gpio
1 SYS_3.3V 2 VDD_5V
7 GPIOG11 203 8 UART1_TX/GPIOG6 198
9 GND 10 UART1_RX/GPIOG7 199
11 UART2_TX/GPIOA0 0 12 GPIOA6 6
17 SYS_3.3V 18 UART1_CTS/GPIOG9 201
23 SPI0_CLK/GPIOC2 66 24 SPI0_CS/GPIOC3 67
  • USB/I2S/IR Pin Description
Pin# Name Description
1 VDD_5V 5V Power Out
2 USB-DP1 USB1 DP Signal
3 USB-DM1 USB1 DM Signal
4 USB-DP2 USB2 DP Signal
5 USB-DM2 USB2 DM Signal
6 GPIOL11/IR-RX GPIOL11 or IR Receive
8 PCM0_SYNC/I2S0_LRC I2S/PCM Sample Rate Clock/Sync
9 PCM0_CLK/I2S0_BCK I2S/PCM Sample Rate Clock
10 PCM0_DOUT/I2S0_SDOUT I2S/PCM Serial Bata Output
11 PCM0_DIN/I2S0_SDIN I2S/PCM Serial Data Input
12 GND 0V
  • Debug Port(UART0)
Pin# Name
2 VDD_5V
  • Audio Port Description
Pin# Name Description
1 LL LINEOUTL, LINE-OUT Left Channel Output
2 LR LINEOUTR, LINE-OUT Right Channel Output
3 MICN MICIN1N, Microphone Negative Input
4 MICP MICIN1P, Microphone Positive Input
  • DVP Camera IF Pin Spec
Pin# Name Description
1, 2 SYS_3.3V 3.3V power output, to camera modules
7,9,13,15,24 GND Gound, 0V
3 I2C2_SCL I2C Clock Signal
4 I2C2_SDA I2C Data Signal
5 GPIOE15 Regular GPIO, control signals output to camera modules
6 GPIOE14 Regular GPIO, control signals output to camera modules
8 MCLK Clock signals output to camera modules
10 NC Not Connected
11 VSYNC vertical synchronization to CPU from camera modules
12 HREF/HSYNC HREF/HSYNC signal to CPU from camera modules
14 PCLK PCLK signal to CPU from camera modules
16-23 Data bit7-0 data signals

  1. SYS_3.3V: 3.3V power output
  2. VVDD_5V: 5V power input/output. When the external device’s voltage is greater than the MicroUSB's voltage the external device is charging the board otherwise the board powers the external device. The input range is 4.7V ~ 5.6V
  3. All pins are 3.3V, output current is 5mA
  4. For more details refer to the document:NanoPi-NEO-Air-1608-Schematic.pdf

Dimensional Diagram


Get Started

Essentials You Need

Before starting to use your NanoPi NEO AIR get the following items ready

  • NanoPi NEO AIR
  • microSD Card/TFCard: Class 10 or Above, minimum 8GB SDHC
  • microUSB power. A 5V/2A power is a must
  • A Host computer running Ubuntu 14.04 64 bit system

TF Cards We Tested

To make your NanoPi NEO AIR boot and run fast we highly recommend you use a Class10 8GB SDHC TF card or a better one. The following cards are what we used in all our test cases presented here:

  • SanDisk TF 8G Class10 Micro/SD TF card:

SanDisk MicroSD 8G

  • SanDisk TF128G MicroSDXC TF 128G Class10 48MB/S:

SanDisk MicroSD 128G

  • 川宇 8G C10 High Speed class10 micro SD card:

chuanyu MicroSD 8G

Make an Installation TF Card

Download Image Files

  • Get the following files from here [1] to download image files and the flashing utility:
Image Files: Ubuntu-Core with Qt-Embedded, kernel:Linux-3.4.y eflasher image which can be used to Flash OS image files to eMMC, kernel:Linux-3.4.y Ubuntu-Core with Qt-Embedded, kernel:Linux-4.x.y NAS image file, kernel:Linux-4.x, for 1-bay NAS Dock OLED image file,kernel:Linux-4.x.y, for NanoHat OLED eflasher image which can be used to Flash OS image files to eMMC, kernel:Linux-4.x.y
Flash Utility:
win32diskimager.rar Windows utility. Under Linux users can use "dd"

Comparison of Linux-3.4.y and Linux-4.x.y

  • Our Linux-3.4.y is provided by Allwinner. Allwinner has done a lot of customization work which on one hand contains many features and functions but on the other hand incurs overheat issues;
  • Our Linux-4.x.y is updated very often. We will keep this kernel with the latest one released by Linus Torvalds. This kernel doesn't generate heat that much and if you don't need to use VPU or GPU you can try this kernel;

Here is a comparison table:

Boot OS from MicroSD Card

Make Installation MicroSD Card
  • Extract an OS image and win32diskimager.rar. Insert a MicroSD card(at least 8G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your TF card's drive, the wanted image file and click on "write" to start flashing the SD card till it is done.
  • Insert this card into your AIR's MicroSD card slot and power on (with a 5V/2A power source). If the green LED is on and blue LED is blinking this indicates your AIR has successfully booted.

Note:you can make both a Debian and a Ubuntu image card in this way.

Flash image to eMMC

  • Extract the eflasher package and win32diskimager.rar. Insert a MicroSD card(at least 8G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your SD card's drive, the wanted image file and click on "write" to start flashing the MicroSD card.
  • Insert this card into your AIR and power on (with a 5V/2A power source) the board. If the green LED is on and blue LED is blinking it indicates your eflasher has started installation.
  • Run the following command on a terminal:
$ su root
$ eflasher

Type a number and enter to select an OS, then type "yes" and enter to start installation:
After installation is done shutdown the system, take out the TF card, power on your board again and it will boot from eMMC.

Work with Ubuntu-Core with Qt-Embedded

Run Ubuntu-Core

  • Insert a MicroSD card with Ubuntu-Core image into your NanoPi NEO Air, connect the NanoPi NEO Air to a 5V/2A power source the NanoPi NEO Air will be automatically powered on. If you can see the blue LED flashing it means your board is working.


  • If you want to do kernel development you need to use a serial communication board, ie a PSU-ONECOM board, which will allow you to operate the board via a serial terminal.
  • Here is a setup where we connect a NanoPi NEO Air to a PC via the PSU-ONECOM and you can power on your Air from either the PSU-ONECOM or its MicroUSB:


  • Ubuntu-Core's User Accounts:

Non-root User:

   User Name: pi
   Password: pi


   User Name: root
   Password: fa

The system is automatically logged in as "pi". You can do "sudo npi-config" to disable auto login.

  • Update packages
$ sudo apt-get update

Extend TF Card's rootfs Section

When you boot Debian/UbuntuCore for the first time with your image card your OS will automatically resize the file system and this process takes a relatively long time.After your OS is fully loaded you can check the file system's size by using the following command:

$ df -h

Wireless Connection

Note: An IPX antenna is A MUST.
NanoPi NEO Air-IPX

FriendlyElec integrates utility: NetworkManager in Ubuntu to manage network. You can command "nmcli" to start this utility. Here is how to start WiFi:

  • List network devices
$ sudo nmcli dev

Note: if a network device's status is "unmanaged" it means that device is not accessed by the NetworkManager and you need to clear the settings in " /etc/network/interfaces" and reboot your board.

  • Start WiFi
$ sudo nmcli r wifi on
  • Scan Nearby WiFi Hotspots
$ sudo nmcli dev wifi
  • Connect to a WiFi Hotspot
$ sudo nmcli dev wifi connect "SSID" password "PASSWORD"

The "SSID" and "Password" need to be replaced with your actual SSID and password.
If a connection is successfully established your board will be automatically connected to your specified WiFi on system reboot.

For more details about the NetworkManager refer to this article:NetworkManager

Login via SSH

You can log into the board via SSH. In our test the IP address detected by our router was and we ran the following command to log into the NanoPi NEO Air:

$ ssh root@

The password is fa

Check CPU's Working Temperature

Type the following command on a terminal to read H3's temperature and frequency:

$ cpu_freq

Check System Information with Rpi-Monitor

Our Ubuntu-Core contains the Rpi-Monitor utility with which users can check system information and status.
In our case our NEO Air's IP was and we typed the following IP in a browser:

We entered the following page:
Users can easily check these system information and status.

Connect NanoPi NEO AIR to DVP Camera(CAM500B)

Note:this function is only supported in Linux-3.4.y
The CAM500B camera module is a 5M-pixel camera with DVP interface. For more tech details about it you can refer to Matrix - CAM500B.
Boot your NanoPi NEO AIR, connect your NEO AIR to a network, log into the board as root and run "mjpg-streamer":

$ cd /root/mjpg-streamer
$ make
$ ./

The mjpg-streamer application is an open source video steam server. After it is successfully started the following messages will be popped up:

 i: Using V4L2 device.: /dev/video0
 i: Desired Resolution: 1280 x 720
 i: Frames Per Second.: 30
 i: Format............: YUV
 i: JPEG Quality......: 90
 o: www-folder-path...: ./www/
 o: HTTP TCP port.....: 8080
 o: username:password.: disabled
 o: commands..........: enabled

In our case the NEO AIR's IP address was We typed in a browser and were able to view the images taken from the camera's. Here is what you would expect to observe:
The mjpg-streamer soft-encodes data with libjpeg and you can hard-encode its data with ffmpeg which will greatly increase CPU's efficiency and speed up data encoding:

$ ffmpeg -t 30 -f v4l2 -channel 0 -video_size 1280x720 -i /dev/video0 -pix_fmt nv12 -r 30 -b:v 64k -c:v cedrus264 test.mp4

By default it records a 30-second video. Typing "q" stops video recording. After recording is stopped a test.mp4 file will be generated.


Install Bluetooth packages:

$ apt-get install bluetooth bluez obexftp openobex-apps python-gobject ussp-push time bc

In our test case we used a Samsung Galaxy A7 Android phone. Connect a wireless antenna to your Air and type the following command to search a surrounding Bluetooth device:

$ hcitool scan

Our Samsung Samsung Galaxy A7 was detected and its MAC address was "50:C8:E5:A7:31:D2". We had a "test.jpg" file on our NEO Air and we sent it to A7 by running the following command:

$ -a 50:C8:E5:A7:31:D2 -f test.jpg

On the phone a popup window would show up. After we clicked to accept this file transfer would start. After this transfer was done we got the following messages:

name=test.jpg, size=2215936
Local device A1:A3:C1:79:66:6E
Remote device 50:C8:E5:A7:31:D2 (12)
Connection established
send 2164K finish, speed=5.6 K/s

We found this file on the phone and the file transfer was successful.

Work with npi-config Utility

The npi-config is a system configuration utility for setting passwords, language, timezone, hostname, SSH and auto-login,and enabling/disabling i2c, spi, serial and PWM. You can start this utillity by running the following command:

$ npi-config

Here is the npi-config's main window:
For more details refer to:npi-config

Access GPIO Pins/Wirings with RPi.GPIO_NP

RPi.GPIO is a famous library in python for Raspberry Pi. FriendlyElec ported it to the NanoPi NEO Air's UbuntuCore images and renamed it as RPi.GPIO_NP.
For more details refer to [2]

Make Your Own Ubuntu-Core with Qt-Embedded

Use Mainline BSP

The NanoPi NEO Air has gotten support for kernel Linux-4.x.y. For more details about how to use mainline u-boot and Linux-4.x.y refer to :Mainline U-boot & Linux

Use Allwinner's BSP


Visit this link download link and enter the "sources/nanopi-H3-bsp" directory and download all the source code.Use the 7-zip utility to extract it and a lihee directory and an Android directory will be generated.You can check that by running the following command:

$ ls ./
android lichee

Or you can get it from our github:

$ git clone lichee

Note: "lichee" is the project name named by Allwinner for its CPU's source code which contains the source code of U-boot, Linux kernel and various scripts.

Install Cross Compiler

Visit this site download link, enter the "toolchain" directory, download the cross compiler "gcc-linaro-arm.tar.xz" and copy it to the "lichee/brandy/toochain/" directory.

Compile lichee Source Code

Compilation of the H3's BSP source code must be done under a PC running a 64-bit Linux.The following cases were tested on Ubuntu-14.04 LTS-64bit:

$ sudo apt-get install gawk git gnupg flex bison gperf build-essential \
zip curl libc6-dev libncurses5-dev:i386 x11proto-core-dev \
libx11-dev:i386 libreadline6-dev:i386 libgl1-mesa-glx:i386 \
libgl1-mesa-dev g++-multilib mingw32 tofrodos \
python-markdown libxml2-utils xsltproc zlib1g-dev:i386 u-boot-tools

Enter the lichee directory and un the following command to compile the whole package:

$ cd lichee/fa_tools
$ ./ -b nanopi-air -p linux -t all

After this compilation succeeds a u-boot, Linux kernel and kernel modules will be generated.
Note: the lichee directory contains a cross-compiler we have setup. When the script runs it will automatically call this cross-compiler.

Type the following command to update the U-boot on the MicroSD card:

$ cd lichee/fa_tools/
$ ./ -d /dev/sdX -p linux -t u-boot

Note: you need to replace "/dev/sdx" with the device name in your system.
The boot.img and kernel modules are under the "linux-3.4/output" directory. You can copy the new boot.img file to your MicroSD card's boot section.

Compile U-boot

You can compile u-boot individually by using the following command:

$ cd lichee/fa_tools/
$ ./ -b nanopi-air -p linux -t u-boot

The script patches the U-boot with Allwinner features. A U-boot without these features cannot work.
Type the following command to update the U-boot on the MicroSD card:

$ cd lichee/fa_tools/
$ ./ -d /dev/sdX -p linux -t u-boot

Note: you need to replace "/dev/sdx" with the device name in your system.

Compile Linux Kernel

If you want to compile the Linux kernel run the following command:

$ cd lichee/fa_tools/
$ ./ -b nanopi-air -p linux -t kernel

After the compilation is done a uImage and its kernel modules will be generated under "linux-3.4/output".

Clean Source Code

$ cd lichee/fa_tools/
$ ./ -b nanopi-air -p linux -t clean

3D Printing Files

NanoPi NEO Air 3D printed housing
NanoPi NEO Air V1.0 3D printing files
[http:// NanoPi NEO Air V1.1 3D printing files]

Other OS Support


DietPi is an extremely lightweight Debian Jessie OS. Its image file starts at 400MB and nearly 3x lighter than 'Raspbian Lite'.It is pre-installed with DietPi-RAMLog. These features enable users to get the best performance of a device.
The following steps are for reference only. FriendlyElec doesn't provide technical support for them.
Installation guide:

  • Download the image file "DietPi_NanoPiNEO-armv7-(Jessie)" from DietPi_NanoPiNEO-armv7-(Jessie)
  • Extract the package and use the win32diskimager to write it to a MicroSD card under Windows.
  • Insert this MicroSD card to your NanoPi NEO and power up.

Username:root , Password: dietpi


The following BakeBit modules can work with BakeBit - NanoHat Hub:

List of Version Differences

  • NanoPi NEO Air Version List(Hardware)
version NanoPi NEO V1.0 NanoPi NEO V1.1
NanoPi-NEO Air-V1.0.jpg
NanoPi-NEO Air-V1.1.jpg
TF Card Slot ① Air V1.1 uses a different card slot compared to V1.0. The card slot's position is moved towards the AP6212 chip by 1mm.
Audio Interface ②Air V1.0's audio interface is populated to four spots as follows
NanoPi NEO-AIR Audio
② Air V1.1's audio interface is populated to four 2.54mm pitch through holes as follows
NanoPi NEO-AIR Audio
LED Color ③ Air v1.0 LED's color: PWR--Green, STAT--Blue ③ Air v1.1 LED's Color: PWR--Red, STAT--Green

Update Log


  • Released English Version


  • Updated Sections 1, 3.1 and 6.2


  • Updated Section 6.2
  • Added Section 6.4


  • Updated Section 5.2


  • Updated Sections 6 and 9
  • Added sections 5.3 and 5.4


  • Added section 3: software features
  • Added section 8: setup cross compiler for user space programs
  • Updated Sections 6.3: manage wifi with networkmanager


  • Added section 3.5: support for NAS Dock


  • Updated section 3.2: added support for RPi.GPIO_NP
  • Added section 6.9: added support for RPi.GPIO_NP


  • Updated section 7: compiling UbuntuCore
  • Added section 6.9: added support for npi_config


  • Updated section 3.2


  • Updated sections 4 and 8
  • Added section 11