Difference between revisions of "NanoPi NEO Air"

From FriendlyARM WiKi
Jump to: navigation, search
(机械尺寸)
(Dimensional Diagram)
(191 intermediate revisions by 7 users not shown)
Line 1: Line 1:
[[NanoPi NEO-AIR/zh|查看中文]]
+
[[NanoPi NEO AIR/zh|查看中文]]
  
 
==Introduction==
 
==Introduction==
Line 5: Line 5:
 
[[File:NanoPi NEO-AIR-2.jpg|thumb|300px]]
 
[[File:NanoPi NEO-AIR-2.jpg|thumb|300px]]
 
[[File:NanoPi NEO-AIR-3.jpg|thumb|300px]]
 
[[File:NanoPi NEO-AIR-3.jpg|thumb|300px]]
 +
* The NanoPi NEO Air is a 40 x 40mm open source ARM board for makers.It uses an Allwinner H3 Quad Core A7 processor at 1.2GHz. Its pins are compatible with the NanoPi NEO(V 1.2) and its 24-pin header is compatible with Raspberry Pi's GPIO pin headers.
 +
* The NanoPi NEO AIR features 512MB of 16bit wide DDR3 RAM, 8GB eMMC and one MicroSD slot. It has WiFi & Bluetooth and DVP camera interface(YUV422). The DVP camera interface can support friendlyarm's 5M-pixel camera module
 +
* It has enhanced power circuit design and better heat dissipation.
  
==Specifications==
+
==Hardware Spec==
 
* CPU: Allwinner H3, Quad-core Cortex-A7 Up to 1.2GHz
 
* CPU: Allwinner H3, Quad-core Cortex-A7 Up to 1.2GHz
 
* RAM: 512MB DDR3 RAM
 
* RAM: 512MB DDR3 RAM
Line 12: Line 15:
 
* WiFi: 802.11b/g/n
 
* WiFi: 802.11b/g/n
 
* Bluetooth: 4.0 dual mode
 
* Bluetooth: 4.0 dual mode
 +
* DVP Camera: 0.5mm pitch 24 pin FPC seat
 +
* MicroUSB: OTG and power input
 
* MicroSD Slot x 1
 
* MicroSD Slot x 1
* GPIO: 2.54mm pitch 24pin. It includes UART, SPI, I2C, IO etc
+
* Debug Serial Port: 4Pin,2.54mm pitch pin header
 +
* GPIO1: 2.54mm spacing 24pin,It includes UART,SPI,I2C,GPIO
 +
* GPIO2: 2.54mm spacing 12pin,It includes USBx2,IR,SPDIF,I2S
 
* PCB Size: 40 x 40mm
 
* PCB Size: 40 x 40mm
 +
* PCB layer: 6
 
* Power Supply: DC 5V/2A
 
* Power Supply: DC 5V/2A
* OS/Software: u-boot, UbuntuCore
+
* Working Temperature: -20℃ to 70℃
* Weight: 7.5g(WITHOUT Pin-headers); 9.7g(WITH Pin-headers)
+
* OS/Software: u-boot, UbuntuCore, eflasher
 +
* Weight: 7.5g(WITHOUT Pin-headers)
 +
 
 +
==Software Features==
 +
===uboot===
 +
<!---
 +
* mainline uboot released on March 2017
 +
--->
 +
* supports fastboot to update uboot
 +
 
 +
===UbuntuCore 16.04===
 +
* mainline kernel: Linux-4.11.2
 +
* rpi-monitor: check system status and information
 +
* npi-config: system configuration utility for setting passwords, language, timezone, hostname, SSH and auto-login,and enabling/disabling i2c, spi, serial and PWM
 +
<!---
 +
* wiringNP to access GPIO pins
 +
--->
 +
* networkmanager: manage network
 +
<!---
 +
* system log output from serial port
 +
* nano editor
 +
--->
 +
* software utility: RPi.GPIO_NP to access GPIO pins
 +
* welcome window with basic system information and status
 +
* auto-login with user account "pi" with access to npi-config
 +
<!---
 +
* sudoers include "fa"
 +
--->
 +
* on first system boot file system will be automatically extended.
 +
* supports file system auto check and repair on system boot.
 +
* supports FriendlyElec's [http://wiki.friendlyarm.com/wiki/index.php/NanoHat_PCM5102A NanoHat-PCM5102A] 
 +
* supports FriendlyElec's [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_2%278_SPI_Key_TFT Matrix_-_2.8_SPI_Key_TFT]
 +
* supports file transfer with Bluetooth
 +
<!---
 +
* supports USB WiFi module: refer to [[#Connect USB WiFi to NEO]]
 +
* supports audio recording and playing with 3.5mm audio jack
 +
* supports USB Host and 100M Ethernet
 +
--->
 +
* supports FriendlyElec BakeBit modules
 +
* supports dynamic frequency scaling and voltage regulation
 +
<!---
 +
* relieves overheat compared to kernel Linux-3.4
 +
* fixed MAC address
 +
--->
 +
 
 +
===Ubuntu OLED===
 +
* supports FriendlyElec's OLED module
 +
 
 +
===Eflasher===
 +
* supports flashing OS image to eMMC
 +
 
 +
===Debian for NAS Dock===
 +
* supports FriendlyElec's NAS Dock
 +
 
 +
<!---
 +
===Android===
 +
* basic system
 +
--->
  
 
==Diagram, Layout and Dimension==
 
==Diagram, Layout and Dimension==
 
===Layout===
 
===Layout===
 
[[File:NanoPi-NEO-AIR-layout.jpg |thumb|600px|NanoPi NEO-AIR Layout]]
 
[[File:NanoPi-NEO-AIR-layout.jpg |thumb|600px|NanoPi NEO-AIR Layout]]
 +
[[File:NanoPi-NEO-AIR pinout-02.jpg|thumb|frameless|600px|NanoPi NEO Air Pinout]]
  
 
* '''GPIO Pin Description'''
 
* '''GPIO Pin Description'''
Line 30: Line 96:
 
|1    || SYS_3.3V  ||    ||2    || VDD_5V ||
 
|1    || SYS_3.3V  ||    ||2    || VDD_5V ||
 
|-
 
|-
|3    || I2C0_SDA  ||    ||4    || VDD_5V ||
+
|3    || I2C0_SDA/GPIOA12   ||    ||4    || VDD_5V ||
 
|-  
 
|-  
|5    || I2C0_SCL  ||    ||6    || GND    ||
+
|5    || I2C0_SCL/GPIOA11   ||    ||6    || GND    ||
 
|-
 
|-
 
|7    || GPIOG11    || 203 ||8    || UART1_TX/GPIOG6 || 198
 
|7    || GPIOG11    || 203 ||8    || UART1_TX/GPIOG6 || 198
Line 38: Line 104:
 
|9    || GND        ||    ||10    || UART1_RX/GPIOG7 || 199   
 
|9    || GND        ||    ||10    || UART1_RX/GPIOG7 || 199   
 
|-
 
|-
|11  || UART2_TX/GPIOA0  || 0      ||12    || PWM1/GPIOA6 || 6
+
|11  || UART2_TX/GPIOA0  || 0      ||12    || GPIOA6 || 6
 
|-
 
|-
 
|13  || UART2_RTS/GPIOA2 || 2      ||14    || GND ||  
 
|13  || UART2_RTS/GPIOA2 || 2      ||14    || GND ||  
Line 50: Line 116:
 
|21  || SPI0_MISO/GPIOC1 || 65    ||22    || UART2_RX/GPIOA1  || 1
 
|21  || SPI0_MISO/GPIOC1 || 65    ||22    || UART2_RX/GPIOA1  || 1
 
|-
 
|-
|23  || SPI0_CLK/GPIOC2 || 93     ||24    || SPI0_CS/GPIOC3  || 67
+
|23  || SPI0_CLK/GPIOC2 || 66     ||24    || SPI0_CS/GPIOC3  || 67
 
|}
 
|}
  
* '''USB/Audio/IR Pin Description'''
+
* '''USB/I2S/IR Pin Description'''
 
::{| class="wikitable"
 
::{| class="wikitable"
 
|-
 
|-
| style="background: PaleTurquoise; color: black" colspan="3"| '''NanoPi-NEO-AIR''' || style="background: PaleTurquoise; color: black" colspan="3"| '''NanoPi-NEO-AIR'''
+
| Pin# || Name    ||   Description   
 
|-
 
|-
|Pin# || Name    ||   Description      || Pin# || Name    ||    Description   
+
| 1   || VDD_5V  ||    5V Power Out
 
|-
 
|-
|1    || VDD_5V  ||    5V Power Out      || 1    || VDD_5V  ||    5V Power Out
+
| 2    || USB-DP2 ||    USB2 DP Signal
|-
+
|2    || USB-DP1  ||    USB1 DP Signal    || 2    || USB-DP1 ||    USB1 DP Signal
+
 
|-  
 
|-  
|3    || USB-DM1 ||    USB1 DM Signal    || 3    || USB-DM1  ||    USB1 DM Signal
+
| 3    || USB-DM2 ||    USB2 DM Signal
 
|-
 
|-
|4    || USB-DP2 ||    USB2 DP Signal    || 4    || USB-DP2  ||    USB2 DP Signal
+
| 4    || USB-DP3 ||    USB3 DP Signal
 
|-
 
|-
|5    || USB-DM2 ||    USB2 DM Signal    || 5    || USB-DM2  ||    USB2 DM Signal
+
| 5    || USB-DM3 ||    USB3 DM Signal
 
|-
 
|-
|6    || GPIOL11/IR-RX  || GPIOL11 or IR Receive || 6    || GPIOL11/IR-RX  || GPIOL11 or IR Receive
+
| 6    || GPIOL11/IR-RX  || GPIOL11 or IR Receive
 
|-
 
|-
|7    || SPDIF-OUT/GPIOA17  || GPIOA17 or SPDIF-OUT || 7    || SPDIF-OUT/GPIOA17  || GPIOA17 or SPDIF-OUT
+
| 7    || SPDIF-OUT/GPIOA17  || GPIOA17 or SPDIF-OUT
 
|-
 
|-
|8    || MICIN1P  ||  Microphone Positive Input    || 8  || PCM0_SYNC/I2S0_LRC  || I2S/PCM Sample Rate Clock/Sync
+
| 8  || PCM0_SYNC/I2S0_LRC  || I2S/PCM Sample Rate Clock/Sync
 
|-
 
|-
|9    || MICIN1N    ||  Microphone Negative Input    || 9  || PCM0_CLK/I2S0_BCK  || I2S/PCM Sample Rate Clock
+
| 9  || PCM0_CLK/I2S0_BCK  || I2S/PCM Sample Rate Clock
 
|-
 
|-
|10    || LINEOUTR  || LINE-OUT Right Channel Output  || 10  || PCM0_DOUT/I2S0_SDOUT || I2S/PCM Serial Bata Output
+
| 10  || PCM0_DOUT/I2S0_SDOUT || I2S/PCM Serial Bata Output
 
|-
 
|-
|11    || LINEOUTL  || LINE-OUT Left Channel Output  || 11  || PCM0_DIN/I2S0_SDIN || I2S/PCM Serial Data Input
+
| 11  || PCM0_DIN/I2S0_SDIN || I2S/PCM Serial Data Input
 
|-
 
|-
|12    || GND      || 0V                            || 12    || GND      || 0V
+
| 12    || GND      || 0V
 
|}
 
|}
  
Line 94: Line 158:
 
|2    || VDD_5V     
 
|2    || VDD_5V     
 
|-  
 
|-  
|3    || UART_TXD0     
+
|3    || UART_TXD0/GPIOA4    
 
|-
 
|-
|4    || UART_RXD0  
+
|4    || UART_RXD0/GPIOA5/PWM0
 
|}
 
|}
 +
 +
* ''' Audio Port Description'''
 +
::{| class="wikitable"
 +
|-
 +
|Pin# || Name      ||  Description 
 +
|-
 +
|1    || LL  || LINEOUTL, LINE-OUT Left Channel Output
 +
|-
 +
|2    || LR  || LINEOUTR, LINE-OUT Right Channel Output
 +
|-
 +
|3    || MICN  || MICIN1N, Microphone Negative Input   
 +
|-
 +
|4    || MICP  ||  MICIN1P, Microphone Positive Input
 +
|}
 +
 +
* '''DVP Camera IF Pin Spec'''
 +
::{| class="wikitable"
 +
|-
 +
|Pin# || Name      || Description 
 +
|-
 +
|1, 2 || SYS_3.3V  || 3.3V power output, to camera modules
 +
|-
 +
|7,9,13,15,24 || GND || Gound, 0V
 +
|-
 +
|3    || I2C2_SCL || I2C Clock Signal
 +
|-
 +
|4    || I2C2_SDA  || I2C Data Signal
 +
|-
 +
|5    || GPIOE15  || Regular GPIO, control signals output to camera modules
 +
|-
 +
|6    || GPIOE14 || Regular GPIO, control signals output to camera modules
 +
|-
 +
|8    || MCLK      || Clock signals output to camera modules
 +
|-
 +
|10  || NC || Not Connected
 +
|-
 +
|11  || VSYNC || vertical synchronization to CPU from camera modules
 +
|-
 +
|12  || HREF/HSYNC || HREF/HSYNC signal to CPU from camera modules
 +
|-
 +
|14  || PCLK      || PCLK signal to CPU from camera modules
 +
|-
 +
|16-23 || Data bit7-0 || data signals
 +
|}
 +
 +
 +
  
 
:'''Note:'''
 
:'''Note:'''
 
::# SYS_3.3V: 3.3V power output
 
::# SYS_3.3V: 3.3V power output
::# VVDD_5V: 5V power input/output. When the external device’s power is greater than the MicroUSB's the external device is charging the board otherwise the board powers the external device. The input range is 4.7V ~ 5.6V
+
::# VVDD_5V: 5V power input/output. When the external device’s voltage is greater than the MicroUSB's voltage the external device is charging the board otherwise the board powers the external device. The input range is 4.7V ~ 5.6V
 
::# All pins are 3.3V, output current is 5mA
 
::# All pins are 3.3V, output current is 5mA
::# For more details refer to the document:[]
+
::# For more details refer to the document:[http://wiki.friendlyarm.com/wiki/images/0/00/Nanopi-neo-air-v1.1_1708.pdf NanoPi-NEO-Air-1708-Schematic.pdf]
  
 
===Dimensional Diagram===
 
===Dimensional Diagram===
[[File:NanoPi-NEO-AIR-1606-dimensions.png|frameless|500px|]]
+
[[File:NanoPi-NEO-AIR-1608-dimensions.png|frameless|450px|]]
 +
*[http://wiki.friendlyarm.com/wiki/index.php/File:Dimensional-NanoPi_NEO_Air-V1.1-1708.rar NanoPi-NEO-Air-V1.1-1708 pcb file in dxf format]
  
==快速入门==
+
==Get Started==
===准备工作===
+
===Essentials You Need===
要开启你的NanoPi NEO-AIR新玩具,请先准备好以下硬件
+
Before starting to use your NanoPi NEO AIR get the following items ready
* NanoPi NEO-AIR主板
+
* NanoPi NEO AIR
* microSD卡/TF卡: Class10或以上的 8GB SDHC卡
+
* microSD Card/TFCard: Class 10 or Above, minimum 8GB SDHC
* 一个microUSB接口的外接电源,要求输出为5V/2A(可使用同规格的手机充电器)
+
* microUSB power. A 5V/2A power is a must
* 一台电脑,需要联网,建议使用Ubuntu 14.04 64位系统
+
* A Host computer running Ubuntu 16.04 64 bit system
  
===经测试使用的TF卡===
+
===TF Cards We Tested===
制作启动NanoPi NEO-AIR的TF卡时,建议Class10或以上的 8GB SDHC卡。以下是经友善之臂测试验证过的高速TF卡:
+
To make your NanoPi NEO AIR boot and run fast we highly recommend you use a Class10 8GB SDHC TF card or a better one. The following cards are what we used in all our test cases presented here:
*SanDisk闪迪 TF 8G Class10 Micro/SD 高速 TF卡:
+
* SanDisk TF 8G Class10 Micro/SD TF card:
 
[[File:SanDisk MicroSD.png|frameless|100px|SanDisk MicroSD 8G]]
 
[[File:SanDisk MicroSD.png|frameless|100px|SanDisk MicroSD 8G]]
*SanDisk闪迪 TF128G 至尊高速MicroSDXC TF 128G Class10 48MB/S:
+
* SanDisk TF128G MicroSDXC TF 128G Class10 48MB/S:
 
[[File:SanDisk MicroSD-01.png|frameless|100px|SanDisk MicroSD 128G]]
 
[[File:SanDisk MicroSD-01.png|frameless|100px|SanDisk MicroSD 128G]]
*川宇 8G手机内存卡 8GTF卡存储卡 C10高速class10 micro SD卡:
+
* 川宇 8G C10 High Speed class10 micro SD card:
 
[[File:SanDisk MicroSD-02.png|frameless|100px|chuanyu MicroSD 8G]]
 
[[File:SanDisk MicroSD-02.png|frameless|100px|chuanyu MicroSD 8G]]
  
===制作一张带运行系统的TF卡===
+
===Install OS===
====快速从TF卡启动NanoPi NEO-AIR====
+
====Download Image Files====
* 首先访问[http://pan.baidu.com/s/1i5jl2XB 下载地址]下载需要的固件文件(officail-ROMs目录)和烧写工具(tools目录):<br />
+
* Get the following files from here [http://download.friendlyarm.com/nanopineoair download link] to download image files and the flashing utility: <br />
 
::{| class="wikitable"
 
::{| class="wikitable"
 
|-
 
|-
|colspan=2|固件文件列表:
+
|colspan=2|Image Files:
 
|-
 
|-
|nanopi-air-core-qte-sd4g.img.zip     || 小型的Ubuntu core系统,内含Qt Embedded图形库           
+
|nanopi-neo-air_sd_friendlycore-xenial_3.4_armhf_YYYYMMDD.img.zip || FriendlyCore, kernel:Linux-3.4                 
 
|-
 
|-
|nanopi-air-eflasher-sd8g.img.zip     || eflasher系统固件,该系统具有烧写eMMC的功能                 
+
|nanopi-neo-air_sd_friendlycore-xenial_4.14_armhf_YYYYMMDD.img.zip || FriendlyCore, kernel:Linux-4.14                 
 
|-
 
|-
|colspan=2|烧写工具: 
+
|nanopi-neo-air_sd_openwrt_4.14_armhf_YYYYMMDD.img.zip || OpenWrt, kernel:Linux-4.14                 
 
|-
 
|-
|win32diskimager.rar || Windows平台下的系统烧写工具,Linux平台下可以用dd命令烧写系统
+
|nanopi-neo-air_eflasher_friendlycore-xenial_4.14_armhf_YYYYMMDD.img.zip || eflasher image, for flashing FriendlyCore(Linux-4.14) to eMMC
 +
|-
 +
|nanopi-neo-air_eflasher_openwrt_4.14_armhf_YYYYMMDD.img.zip || eflasher image, for flashing OpenWrt(Linux-4.14) to eMMC
 +
|-
 +
|colspan=2|Flash Utility: 
 +
|-
 +
|win32diskimager.rar || Windows utility. Under Linux users can use "dd"
 
|-  
 
|-  
 
|}
 
|}
* 将固件和烧写工具分别解压,在Windows下插入TF卡(限4G及以上的卡),以管理员身份运行 win32diskimager 工具, 在win32diskimager工具的界面上, 选择你的TF卡盘符,选择你要烧写的系统固件,点击 Write 按钮烧写即可。
 
* 烧写完成后,将制作好TF卡插入AIR,使用USB供电(5V/2A),AIR会上电自动开机,看到板上的蓝色LED闪烁,这说明系统已经开始启动了。<br />
 
  
====制作eflasher系统TF卡====
+
====Comparison of Linux-3.4 and Linux-4.14====
* eflasher系统是友善之臂基于Ubuntu-core定制的文件系统,它能将各种不同的系统快速的烧写到eMMC里。
+
{{AllwinnerH3-KernelDiff|NanoPi-NEO-Air}}
* 将固件nanopi-air-eflasher-sd8g.img.zip和烧写工具win32diskimager.rar分别解压,在Windows下插入TF卡(限8G及以上的卡),以管理员身份运行 win32diskimager 工具,在win32diskimager工具的界面上,选择你的TF卡盘符,选择系统固件,点击 Write 按钮烧写即可。
+
{{BurnOS-Allwinner|NanoPi-NEO-Air}}
* 烧写完成后,将制作好TF卡插入AIR,使用USB供电(5V/2A),AIR会上电自动开机,看到板上的蓝色LED闪烁,这说明eflasher系统已经开始启动了。<br />
+
  
==eflasher系统的使用==
+
{{FriendlyCoreGeneral|NanoPi-NEO-Air}}
===串口登录===
+
{{FriendlyCoreAllwinnerH3|NanoPi-NEO-Air}}
* 如果您需要进行内核开发,你最好选购一个串口配件,连接了串口,则可以通过串口终端对AIR进行操作。以下是串口的接法,接上串口,即可调试。接上串口后你可以选择从串口模块的DC口或者从M1的MicroUSB口进行供电:
+
<!--
[[File:PSU-ONECOM-AIR.jpg|frameless|400px|PSU-ONECOM-AIR]]
+
===Bluetooth===
* root和fa用户的默认密码都是两个字母fa。
+
Install Bluetooth packages:
* 更新软件包:
+
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
apt-get update
+
$ apt-get install bluetooth bluez obexftp openobex-apps python-gobject ussp-push time bc
 
</syntaxhighlight>
 
</syntaxhighlight>
 
+
In our test case we used a Samsung Galaxy A7 Android phone. Connect a wireless antenna to your Air and type the following command to search a surrounding Bluetooth device:
===配置无线网络===
+
将带有eflasher系统的TF卡接入运行Ubuntu的个人PC中,修改TF卡rootfs分区下的etc/wpa_supplicant/wpa_supplicant.conf文件如下:
+
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
+
$ hcitool scan
update_config=1
+
network={
+
        ssid="YOUR-WIFI-ESSID"
+
        psk="YOUR-WIFI-PASSWORD"
+
}
+
 
</syntaxhighlight>
 
</syntaxhighlight>
注意: 请将YOUR-WIFI-ESSID和YOUR-WIFI-PASSWORD替换为真实的WiFi账号和密码。<br>
+
Our Samsung Samsung Galaxy A7 was detected and its MAC address was "50:C8:E5:A7:31:D2". We had a "test.jpg" file on our NEO Air and we sent it to A7 by running the following command:
将TF卡重新插入AIR后上电自动开机,看到蓝色LED闪烁后,稍等1分钟,就可以通过路由器查看到AIR的IP地址了。
+
<syntaxhighlight lang="bash">
 +
$ bt_send_file.sh -a 50:C8:E5:A7:31:D2 -f test.jpg
 +
</syntaxhighlight>
 +
On the phone a popup window would show up. After we clicked to accept this file transfer would start. After this transfer was done we got the following messages:
 +
<syntaxhighlight lang="bash">
 +
name=test.jpg, size=2215936
 +
Local device A1:A3:C1:79:66:6E
 +
Remote device 50:C8:E5:A7:31:D2 (12)
 +
Connection established
 +
send 2164K finish, speed=5.6 K/s
 +
</syntaxhighlight>
 +
We found this file on the phone and the file transfer was successful.
 +
-->
  
===SSH登录===
+
===Video Play and Recording===
AIR没有任何图形界面输出的接口,如果你没有串口模块,可以通过SSH协议登录AIR。假设通过路由器查看到AIR的IP地址为192.168.1.230,在PC机上执行以下命令登录AIR:
+
The NanoPi NEO Air have an audio interface (2.54mm pin header) whose pin spec is as follows:
 +
::{| class="wikitable"
 +
|-
 +
|Pin# || Name      ||  Description 
 +
|-
 +
|1   || LL  ||  LINE-OUT Left Channel Output
 +
|-
 +
|2    || LR    ||  LINE-OUT Right Channel Output   
 +
|-
 +
|3    || MN  || Microphone Negative Input
 +
|-
 +
|4    || MP  || Microphone Positive Input
 +
|}
 +
Here is a hardware setup:<br>
 +
[[File:Earphone-Air.jpg|frameless|400px|Earphone]]<br>
 +
Make sure your board is connected to an audio device before proceed with the following steps<br>
 +
List audio devices:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
ssh root@192.168.1.230
+
$ aplay -l
 +
**** List of PLAYBACK Hardware Devices ****
 +
card 0: Codec [H3 Audio Codec], device 0: CDC PCM Codec-0 []
 +
  Subdevices: 1/1
 +
  Subdevice #0: subdevice #0
 
</syntaxhighlight>
 
</syntaxhighlight>
密码为fa。
+
Both Allwinner H5 and H3 have an internal codec device which is recognized as an [H3 Audio Codec] card device in the kernel.<br>
  
===烧写系统到eMMC===
+
Play video:
eflasher系统内默认已经包含了一个Ubuntu-Core系统,运行TF卡中的eflasher系统,登录终端后执行以下命令将Ubuntu-core烧写到eMMC中:
+
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
flash_eMMC.sh -d /mnt/sdcard/Ubuntu-Core-qte/
+
$ aplay /root/Music/test.wav -D plughw:0
 
</syntaxhighlight>
 
</syntaxhighlight>
该命令会将Ubuntu-Core烧写到eMMC,将WiFi的配置文件拷贝到eMMC的系统中,并扩展eMMC中系统的文件系统分区。
+
Parameter -D plughw:0 means device "card 0" is in use. Make sure you use a correctly recognized card device.<br>
烧写成功后,可以看到下列信息:
+
Record video:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
INFO: flash system to eMMC success
+
$ arecord -f cd -d 5 test.wav
 
</syntaxhighlight>
 
</syntaxhighlight>
断电,将TF卡拔出,重新上电就能运行eMMC中的系统了。当AIR插入TF卡时,默认会优先从TF卡启动,只有当TF卡启动失败时,才会尝试用eMMC启动系统。
 
  
==Ubuntu-Core系统的使用==
+
==Work with OpenWrt==
===查看CPU工作温度===
+
===Introduction===
获取当前CPU的温度、运行频率等信息:
+
OpenWrt is a highly extensible GNU/Linux distribution for embedded devices.Unlike many other distributions for routers, OpenWrt is built from the ground up to be a full-featured, easily modifiable operating system for embedded devices. In practice, this means that you can have all the features you need with none of the bloat, powered by a modern Linux kernel. For more details you can refer to:[https://openwrt.org/ OpenWrt website].
<syntaxhighlight lang="bash">
+
 
cpu_freq
+
===Configure WiFi===
 +
* Make sure you install a WiFi antenna on your board.
 +
* By default the NanoPi NEO Air's OpenWrt is set to AP mode. The default AP hotspot's name is like "OpenWrt-10:d0:7a:de:3d:92" and it doesn't have a password. You can connect a smart phone or PC to it.
 +
* The board's AP hotspot IP address falls into 192.168.2.x. Open a browser in your phone or PC, type 192.168.2.1 in the address bar and you will be able to visit the LuCI GUI:<br>
 +
[[File:phone_luci.png|frameless|300px|phone_luci]] <br>
 +
The default user is root without a password. You can click on "Login" to sign in.
 +
 
 +
* The NEO-Air has only one network device: wlan0. Therefore if you want to visit the internet from the board you need to switch from AP mode to STA mode. Here are the steps.
 +
1) After you load the LuCI Web page, click on Network ---> Wireless and open the configuration page:<br>
 +
[[File:openwrt-wireless.png|frameless|600px|openwrt-wireless]]<br>
 +
2) Click on "Scan" to search surrounding hotspots:<br>
 +
[[File:openwrt-wireless-scan.png|frameless|600px|openwrt-wireless-scan]]<br>
 +
3) Click on "Join network":<br>
 +
[[File:openwrt-wireless-join.png|frameless|600px|openwrt-wireless-join]]<br>
 +
4) Fill your password in the "WPA passphrase" field and click on "Save & Apply":<br>
 +
[[File:openwrt-wireless-save.png|frameless|600px|openwrt-wireless-save]]<br>
 +
Your board will switch from AP mode to STA mode, "OpenWrt-10:d0:7a:de:3d:92" will be removed” and the page will be disconnected. In 30 seconds you can check if your board's wlan0 will be assigned an IP.
 +
 
 +
===System Login===
 +
* Login via Serial Communication
 +
Here is a hardware setup:<br>
 +
Connect the following serial communication board to your board and power on the whole system from the serial board's DC or MicroUSB port:<br />
 +
[[File:PSU-ONECOM-AIR.jpg|frameless|400px]]<br>
 +
 
 +
By default you will login as root without a password. You can set your password by commanding "passwd".<br />
 +
[[File:R1-login.jpg|frameless|500px|R1-login]]<br>
 +
When your board loads OS for the first time the TF card's rootfs system in your board will be automatically partitioned to its max capacity:<br>
 +
[[File:resize_rootfs.png|frameless|500px|resize_rootfs]]<br>
 +
Be patient for this process to be done.
 +
 
 +
* Login via SSH
 +
Make sure you connect your board to the internet following the steps in <Configure WiFi> and your board's wlan0 IP address is 192.168.1.163. Run the following commands to login via SSH:
 +
<syntaxhighlight lang="text">
 +
$ ssh root@192.168.1.163
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
By default you will login as root without a password.
  
===连接DVP摄像头模块(CAM500B)===
+
* Login via Web
CAM500B是一款500万像素摄像头模块,以DVP并行信号输出,详细信息请参考[[Matrix - CAM500B/zh|Matirx-CAM500B]]。<br>
+
OpenWrt supports web login via the LuCI Web GUI. Configure your system following the steps in <Login via SSH>. In our test the board's wlan0 IP address was 192.168.1.163. Type your IP address in a browser and you will be able to load the OpenWrt-LuCI page:<br>
[[File:NanoPi-AIR-cam500b.jpg|frameless|500px|NanoPi-AIR-cam500b]] <br>
+
If your board is connected to the internet and your board's wlan0 is assigned an IP address, after you type the IP address in a browser you will be able to load the OpenWrt-LuCI page:<br>
启动Debian系统,连接网络,以root用户登录终端并编译运行mjpg-streamer:
+
[[File:R1-OpenWrt-LuCI.jpg|frameless|600px|R1-OpenWrt-LuCI]]<br>
<syntaxhighlight lang="bash">
+
By default you will login as root without a password. After click on "Login" you will sign in.
cd /root/mjpg-streamer
+
 
make
+
===Manage Software Packages===
./start.sh
+
OpenWrt has a package management utility: opkg. You can get its details by running the following command:
 +
<syntaxhighlight lang="text">
 +
$ opkg
 +
Package Manipulation:
 +
        update                  Update list of available packages
 +
        upgrade <pkgs>          Upgrade packages
 +
        install <pkgs>          Install package(s)
 +
        configure <pkgs>        Configure unpacked package(s)
 +
        remove <pkgs|regexp>    Remove package(s)
 +
        flag <flag> <pkgs>      Flag package(s)
 +
        <flag>=hold|noprune|user|ok|installed|unpacked (one per invocation)
 +
 
 +
Informational Commands:
 +
        list                    List available packages
 +
        list-installed          List installed packages
 +
        list-upgradable        List installed and upgradable packages
 +
        list-changed-conffiles  List user modified configuration files
 +
        files <pkg>            List files belonging to <pkg>
 +
        search <file|regexp>    List package providing <file>
 +
        find <regexp>          List packages whose name or description matches <regexp>
 +
        info [pkg|regexp]      Display all info for <pkg>
 +
        status [pkg|regexp]    Display all status for <pkg>
 +
        download <pkg>          Download <pkg> to current directory
 +
...
 
</syntaxhighlight>
 
</syntaxhighlight>
mjpg-streamer是一个开源的网络视频流服务器,在板子上成功运行mjpg-streamer后会打印下列信息:
+
These are just part of the manual. Here are some popular opkg commands.
<syntaxhighlight lang="bash">  
+
 
i: Using V4L2 device.: /dev/video0
+
* Update Package List
i: Desired Resolution: 1280 x 720
+
Before you install a package you'd better update the package list:
i: Frames Per Second.: 30
+
<syntaxhighlight lang="text">
i: Format............: YUV
+
$ opkg update
i: JPEG Quality......: 90
+
o: www-folder-path...: ./www/
+
o: HTTP TCP port.....: 8080
+
o: username:password.: disabled
+
o: commands..........: enabled
+
 
</syntaxhighlight>
 
</syntaxhighlight>
  
假设AIR的IP地址为192.168.1.230,在PC的浏览器中输入 192.168.1.230:8080 就能浏览摄像头采集的画面了,效果如下:<br>
+
* Check Available Packages
[[File:mjpg-streamer-cam500a.png|frameless|600px|mjpg-streamer-cam500a]] <br>
+
<syntaxhighlight lang="text">
mjpg-streamer是用libjpeg对摄像头数据进行软编码,你可以使用ffmpeg对摄像头数据进行硬编码,这样能大大降低CPU的占用率并提高编码速度:
+
$ opkg list
 +
</syntaxhighlight>
 +
At the time of writing there are 3241 packages available.
 +
 
 +
* Check Installed Packages
 +
<syntaxhighlight lang="text">
 +
$ opkg list-installed
 +
</syntaxhighlight>
 +
At the time of writing 124 packages have been installed.
 +
 
 +
* Install/Delete Packages:
 +
<syntaxhighlight lang="text">
 +
$ opkg install <pkgs>
 +
$ opkg remove <pkgs>
 +
</syntaxhighlight>
 +
 
 +
* Check Files Contained in Installed Packages:
 +
<syntaxhighlight lang="text">
 +
$ opkg files <pkg>
 +
</syntaxhighlight>
 +
 
 +
* Install Chinese Language Package for LuCI:
 +
<syntaxhighlight lang="text">
 +
$ opkg install luci-i18n-base-zh-cn
 +
</syntaxhighlight>
 +
 
 +
* Check Changed Files:
 +
<syntaxhighlight lang="text">
 +
$ opkg list-changed-conffiles
 +
</syntaxhighlight>
 +
 
 +
* Reference Links:
 +
** [https://openwrt.org/docs/guide-user/additional-software/opkg openwrt opkg]
 +
 
 +
===Check System Status===
 +
* Check CPU Temperature & Frequency:
 +
<syntaxhighlight lang="text">
 +
$ cpu_freq
 +
CPU0 online=1 temp=26581 governor=ondemand cur_freq=480000
 +
CPU1 online=1 temp=26581 governor=ondemand cur_freq=480000
 +
CPU2 online=1 temp=26581 governor=ondemand cur_freq=480000
 +
CPU3 online=1 temp=26581 governor=ondemand cur_freq=480000
 +
</syntaxhighlight>
 +
These messages mean four CPU cores are working online. Each core's temperature is 26.5 degrees. Each core's governor is on demand and the frequency is 480 MHz。
 +
 
 +
* Check System Status on OpenWrt-LuCI Web Page:
 +
After you load the OpenWrt-LuCI page, click on "Statistics ---> Graphs" and you will be able to check all the statistics:<br>
 +
1) System Load:<br>
 +
[[File:statistics_system_load.png|frameless|600px|statistics_system_load]] <br>
 +
2) RAM:<br>
 +
[[File:statistics_memory.png|frameless|600px|statistics_memory]] <br>
 +
3) CPU Temperature:<br>
 +
[[File:statistics_thermal.png|frameless|600px|statistics_thermal]] <br>
 +
"Statistics" is collected by the luci-app-statistics package. The luci-app-statistics package uses the Collectd utility to collect statistics and presents them using the RRDtool utility.<br>
 +
If you want to get more statistics you can install various collectd-mod-* packages.
 +
<!--
 +
The statistics package uses Collectd to gather data and RRDtool to render diagram images.
 +
You can install additional collectd-mod-* plugins to enable more statistics.
 +
-->
 +
All collectd-mod-* packages use the same configuration file: /etc/config/luci_statistics.
 +
 
 +
* Reference Links:
 +
** [https://openwrt.org/docs/guide-user/luci/luci_app_statistics openwrt luci_app_statistics]
 +
** [https://openwrt.org/docs/guide-user/luci/statistics.chart.public openwrt statistics.chart.public]
 +
** [https://openwrt.org/docs/guide-user/perf_and_log/statistic.custom openwrt statistic.custom]
 +
 
 +
==Make Your Own FriendlyCore==
 +
===Use Linux-4.14 BSP===
 +
The NanoPi NEO Air has gotten support for kernel Linux-4.14. For more details about how to use mainline U-boot and Linux-4.14 refer to :[[Building U-boot and Linux for H5/H3/H2+]] <br>
 +
 
 +
===Use Allwinner's Linux-3.4 BSP===
 +
====Preparations====
 +
Visit this link [http://download.friendlyarm.com/nanopineoair download link] and enter the "sources/nanopi-H3-bsp" directory and download all the source code.Use the 7-zip utility to extract it and a lihee directory and an Android directory will be generated. You can check that by running the following command:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
ffmpeg -t 30 -f v4l2 -channel 0 -video_size 1280x720 -i /dev/video0 -pix_fmt nv12 -r 30 -b:v 64k -c:v cedrus264 test.mp4
+
$ ls ./
 +
android lichee
 
</syntaxhighlight>
 
</syntaxhighlight>
默认会录制30秒的视频,输入q能终止录制。录制完成后会在当前目录生成一个名为test.mp4的视频文件,可将其拷贝到PC上进行播放验证。
 
  
==如何编译BSP==
+
Or you can get it from our github:
访问此处[http://pan.baidu.com/s/1miMwKoK 下载地址]的sources目录,下载源码nanopi-H3-bsp。<br>
+
使用7-Zip工具解压后得到两个目录:lichee和android,也可以从github上克隆lichee源码:
+
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
git clone https://github.com/friendlyarm/h3_lichee.git lichee
+
$ git clone https://github.com/friendlyarm/h3_lichee.git lichee
 
</syntaxhighlight>
 
</syntaxhighlight>
注:lichee是全志为其CPU的板级支持包所起的项目名称,里面包含了U-boot,Linux等源码和众多的编译脚本。
+
Note: "lichee" is the project name named by Allwinner for its CPU's source code which contains the source code of U-boot, Linux kernel and various scripts.
 +
 
 +
====Install Cross Compiler====
 +
Visit this site [http://download.friendlyarm.com/nanopineoair download link], enter the "toolchain" directory, download the cross compiler "gcc-linaro-arm.tar.xz" and copy it to the "lichee/brandy/toochain/" directory.<br/>
 +
<!---
 +
If you want to compile your own programs you need to setup a development environment. For more details about this you can refer to section 8 "Setup Cross Compiler for User Space Programs".<br />
 +
(Allwinner's compiler doesn't work very well for some programs)
 +
--->
  
===编译lichee源码===
+
====Compile lichee Source Code====
编译全志 H3 的BSP源码包必须使用64bit的Linux PC系统,并安装下列软件包,下列操作均基于Ubuntu-14.04 LTS-64bit:
+
Compilation of the H3's BSP source code must be done under a PC running a 64-bit Linux.The following cases were tested on Ubuntu-14.04 LTS-64bit:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
sudo apt-get install gawk git gnupg flex bison gperf build-essential \
+
$ sudo apt-get install gawk git gnupg flex bison gperf build-essential \
 
zip curl libc6-dev libncurses5-dev:i386 x11proto-core-dev \
 
zip curl libc6-dev libncurses5-dev:i386 x11proto-core-dev \
 
libx11-dev:i386 libreadline6-dev:i386 libgl1-mesa-glx:i386 \
 
libx11-dev:i386 libreadline6-dev:i386 libgl1-mesa-glx:i386 \
Line 246: Line 512:
 
</syntaxhighlight>
 
</syntaxhighlight>
  
编译lichee源码包,进入lichee目录,执行命令:
+
Enter the lichee directory and un the following command to compile the whole package:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
cd lichee
+
$ cd lichee/fa_tools
./build.sh -p sun8iw7p1 -b nanopi-h3
+
$ ./build.sh -b nanopi-air -p linux -t all
 
</syntaxhighlight>
 
</syntaxhighlight>
该命令会一次性编译好U-boot、Linux内核和模块。<br>
+
After this compilation succeeds a u-boot, Linux kernel and kernel modules will be generated.<br>
注:lichee目录里内置了交叉编译器,当使用build.sh脚本进行源码编译时,会自动使用该内置的编译器,所以无需手动安装编译器。
+
Note: the lichee directory contains a cross-compiler we have setup. When the build.sh script runs it will automatically call this cross-compiler.
  
===打包系统组件===
+
<!---
 +
===Package System Modules===
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
./gen_script.sh nanopi-air
+
$ ./gen_script.sh -b nanopi-neo
 
</syntaxhighlight>
 
</syntaxhighlight>
该命令会将所有编译生成的可执行文件(包括U-boot、Linux内核)和系统配置文件拷贝到lichee/tools/pack/out/目录以便进行统一管理,并且会该目录下生成
+
The gen_script.sh script patches the U-boot with Allwinner features and copies the generated executables including u-boot and Linux kernel and configuration files to the "lichee/tools/pack/out/" directory and generates a script.bin file.<br>
script.bin文件。<br>
+
--->
script.bin是全志系列 CPU 的硬件板级配置文件,相关信息请查看[http://linux-sunxi.org/Script.bin script.bin]。
+
Type the following command to update the U-boot on your TF card:
 +
<syntaxhighlight lang="bash">
 +
$ cd lichee/fa_tools/
 +
$ ./fuse.sh -d /dev/sdX -p linux -t u-boot
 +
</syntaxhighlight>
 +
Note: you need to replace "/dev/sdx" with the device name in your system.<br>
 +
The boot.img and kernel modules are under the "linux-3.4/output" directory. You can copy the new boot.img file to your TF card's boot partition.
  
下列命令可用于更新TF卡上的U-boot:
+
===Compile U-boot===
 +
You can compile u-boot individually by using the following command:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
./fuse_uboot.sh /dev/sdx
+
$ cd lichee/fa_tools/
 +
$ ./build.sh -b nanopi-air -p linux -t u-boot
 
</syntaxhighlight>
 
</syntaxhighlight>
/dev/sdx请替换为实际的TF卡设备文件名。<br>
+
The gen_script.sh script patches the U-boot with Allwinner features. A U-boot without these features cannot work.<br>
uImage和内核模块均位于linux-3.4/output目录下,将uImage拷贝到TF卡的boot分区的根目录即可更新内核。
+
Type the following command to update the U-boot on your TF card:
 +
<syntaxhighlight lang="bash">
 +
$ cd lichee/fa_tools/
 +
$ ./fuse.sh -d /dev/sdX -p linux -t u-boot
 +
</syntaxhighlight>
 +
Note: you need to replace "/dev/sdx" with the device name in your system.
  
===编译U-boot===
+
===Compile Linux Kernel===
如果你想单独编译U-boot,可以执行命令:
+
If you want to compile the Linux kernel run the following command:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
./build.sh -p sun8iw7p1 -b nanopi-h3 -m uboot
+
$ cd lichee/fa_tools/
 +
$ ./build.sh -b nanopi-air -p linux -t kernel
 
</syntaxhighlight>
 
</syntaxhighlight>
编译生成的可执行文件需打上全志系列CPU的硬件板级配置补丁后才能烧写到TF卡上运行,执行./build.sh pack能自动完成打补丁的操作。<br>
+
After the compilation is done a uImage and its kernel modules will be generated under "linux-3.4/output".
如何手动为U-boot打补丁请查看[http://linux-sunxi.org/H3_Manual_build_howto H3_Manual_build_howto],执行下列命令更新TF卡上的U-boot:
+
 
 +
===Clean Source Code===
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
./fuse_uboot.sh /dev/sdx
+
$ cd lichee/fa_tools/
 +
$ ./build.sh -b nanopi-air -p linux -t clean
 
</syntaxhighlight>
 
</syntaxhighlight>
/dev/sdx请替换为实际的TF卡设备文件名。
 
  
===编译Linux内核===
+
<!---
如果你想单独编译Linux内核,可以执行命令:
+
==Setup Cross Compiler for User Space Programs==
 +
Download and extract cross compiler:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
./build.sh -p sun8iw7p1 -b nanopi-h3 -m kernel
+
$ git clone https://github.com/friendlyarm/prebuilts.git
 +
$ sudo mkdir -p /opt/FriendlyARM/toolchain
 +
$ sudo tar xf prebuilts/gcc-x64/arm-cortexa9-linux-gnueabihf-4.9.3.tar.xz -C /opt/FriendlyARM/toolchain/
 
</syntaxhighlight>
 
</syntaxhighlight>
编译完成后uImage和内核模块均位于linux-3.4/output目录下,将uImage拷贝到TF卡的boot分区的根目录即可。
 
  
===清理lichee源码===
+
Add the compiler's path to the "PATH" variable by appending the following lines in the ~/.bashrc file:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
./build.sh -p sun8iw7p1_linux -b nanopi-h3 -m clean
+
export PATH=/opt/FriendlyARM/toolchain/4.9.3/bin:$PATH
 +
export GCC_COLORS=auto
 
</syntaxhighlight>
 
</syntaxhighlight>
  
==3D 打印外壳==
+
Run the ~/.bashrc script to make the changes in effect immediately in your working shell. Attention: there is a space after ".":
[[File:NanoPi NEO-AIR 3D printed housing.png|frameless|300px|NanoPi NEO-AIR 3D printed housing]] <br>
+
<syntaxhighlight lang="bash">
[http://www.thingiverse.com/thing:1698298 3D打印外壳下载链接]
+
$ . ~/.bashrc
 +
</syntaxhighlight>
 +
 
 +
This is a 64-bit compiler and it cannot run on a 32-bit Linux. You can check whether or not your compiler is setup correctly by running the following commands:
 +
<syntaxhighlight lang="bash">
 +
$ arm-linux-gcc -v
 +
Using built-in specs.
 +
COLLECT_GCC=arm-linux-gcc
 +
COLLECT_LTO_WRAPPER=/opt/FriendlyARM/toolchain/4.9.3/libexec/gcc/arm-cortexa9-linux-gnueabihf/4.9.3/lto-wrapper
 +
Target: arm-cortexa9-linux-gnueabihf
 +
Configured with: /work/toolchain/build/src/gcc-4.9.3/configure --build=x86_64-build_pc-linux-gnu
 +
--host=x86_64-build_pc-linux-gnu --target=arm-cortexa9-linux-gnueabihf --prefix=/opt/FriendlyARM/toolchain/4.9.3
 +
--with-sysroot=/opt/FriendlyARM/toolchain/4.9.3/arm-cortexa9-linux-gnueabihf/sys-root --enable-languages=c,c++
 +
--with-arch=armv7-a --with-tune=cortex-a9 --with-fpu=vfpv3 --with-float=hard
 +
...
 +
Thread model: posix
 +
gcc version 4.9.3 (ctng-1.21.0-229g-FA)
 +
</syntaxhighlight>
 +
--->
 +
 
 +
==3D Printing Files==
 +
[[File:DSC 2338.jpg|frameless|300px|NanoPi NEO Air 3D printed housing]] <br>
 +
[http://www.thingiverse.com/thing:1998968 NanoPi NEO Air V1.0 3D printing files]<br>
 +
[http:// NanoPi NEO Air V1.1 3D printing files]<br>
 +
 
 +
==Other OS Support==
 +
===DietPi_NanoPiNEO-armv7-(Jessie)===
 +
DietPi is an extremely lightweight Debian Jessie OS. Its image file starts at 400MB and nearly 3x lighter than 'Raspbian Lite'.It is pre-installed with DietPi-RAMLog. These features enable users to get the best performance of a device.<br />
 +
The following steps are for reference only. FriendlyElec doesn't provide technical support for them.<br />
 +
Installation guide:
 +
* Download the image file "DietPi_NanoPiNEO-armv7-(Jessie)" from [http://dietpi.com/downloads/images/DietPi_NanoPiNEO-armv7-(Jessie).7z DietPi_NanoPiNEO-armv7-(Jessie)]
 +
* Extract the package and use the win32diskimager to write it to a MicroSD card under Windows.
 +
* Insert this MicroSD card to your NanoPi NEO and power up.
 +
Username:root  ,  Password: dietpi
 +
 
 +
{{DeveloperGuildH3||NanoPi-NEO-Air}}
 +
 
 +
==Resources==
 +
* Schematics
 +
** [http://wiki.friendlyarm.com/wiki/images/9/98/NanoPi-NEO-Air-1608-Schematic.pdf NanoPi-NEO-Air-1608-Schematic.pdf]
 +
** [http://wiki.friendlyarm.com/wiki/images/0/00/Nanopi-neo-air-v1.1_1708.pdf NanoPi-NEO-Air-V1.1-1708-Schematic.pdf]
 +
* Dimensional Diagram
 +
** [http://wiki.friendlyarm.com/wiki/images/7/78/NanoPi-NEO-Air-1608-dimensions%28dxf%29.zip pcb file in dxf format]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/File:Dimensional-NanoPi_NEO_Air-V1.1-1708.rar NanoPi-NEO-Air-V1.1-1708 pcb file in dxf format]
 +
* H3 datasheet
 +
** [http://wiki.friendlyarm.com/wiki/images/4/4b/Allwinner_H3_Datasheet_V1.2.pdf Allwinner_H3_Datasheet_V1.2.pdf]
 +
 
 +
The following BakeBit modules can work with BakeBit - NanoHat Hub:
 +
* 1.[http://wiki.friendlyarm.com/wiki/index.php/BakeBit_-_Button Button]
 +
* 2.[http://wiki.friendlyarm.com/wiki/index.php/BakeBit_-_Buzzer Buzzer]
 +
* 3.[http://wiki.friendlyarm.com/wiki/index.php/BakeBit_-_Green_LED Green LED]
 +
* 4.[http://wiki.friendlyarm.com/wiki/index.php/BakeBit_-_JoyStick JoyStick]
 +
* 5.[http://wiki.friendlyarm.com/wiki/index.php/BakeBit_-_LED_Bar LED Bar]
 +
* 6.[http://wiki.friendlyarm.com/wiki/index.php/BakeBit_-_Light_Sensor Light Sensor]
 +
* 7.[http://wiki.friendlyarm.com/wiki/index.php/BakeBit_-_OLED_128x64 OLED]
 +
* 8.[http://wiki.friendlyarm.com/wiki/index.php/BakeBit_-_Red_LED Red LED]
 +
* 9.[http://wiki.friendlyarm.com/wiki/index.php/BakeBit_-_Rotary_Angle_Sensor Rotary Angle Sensor]
 +
* 10.[http://wiki.friendlyarm.com/wiki/index.php/BakeBit_-_Servo Servo]
 +
* 11.[http://wiki.friendlyarm.com/wiki/index.php/BakeBit_-_Sound_Sensor Sound Sendor]
 +
* 12.[http://wiki.friendlyarm.com/wiki/index.php/BakeBit_-_Ultrasonic_Ranger Ultrasonic Ranger]
 +
 
 +
* Matrix Modules & Wiki Sites:
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Button Button]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_LED LED]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Analog_to_Digital_Converter A/D Converter]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Relay Relay]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_3-Axis_Digital_Accelerometer 3-Axis Digital Accelerometer]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_3-Axis_Digital_Compass 3-Axis Digital Compass]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Temperature_Sensor Temperature Sensor]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Temperature_and_Humidity_Sensor Temperature & Humidity Sensor]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Buzzer Buzzer]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Joystick Joystick]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_I2C_LCD1602_Keypad I2C(PCF8574)+LCD1602]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Sound_Sensor Sound Sensor]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Ultrasonic_Ranger Ultrasonic Ranger]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_GPS GPS]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Compact_Kit Matrix - Compact Kit]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Fire_Sensor Fire Sensor]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_CAM500A CAM500A Camera]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_BAll_Rolling_Switch BAll Rolling Switch]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_2%278_SPI_Key_TFT 2'8 SPI Key TFT 2.8" SPI LCD]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_IR_Counter IR Counter]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_IR_Receiver IR Receiver]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_L298N_Motor_Driver L298N Motor Driver]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_MQ-2_Gas_Sensor MQ-2 Gas Sensor]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_MQ-3_Gas_Sensor MQ-3 Gas Sensor]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_One_Touch_Sensor One_Touch_Sensor]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Photoresistor _Photoresistor]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Potentiometer _Potentiometer]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Pressure_and_Temperature_Sensor Pressure & Temperature Sensor]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_RGB_LED RGB LED]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_RTC RTC]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Rotary_Encoder Rotary Encoder]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Soil_Moisture_Sensor Soil Moisture Sensor]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Thermistor Thermistor]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_USB_WiFi USB WiFi]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/Matrix_-_Water_Sensor Water Sensor]
 +
 
 +
==List of Version Differences==
 +
* '''NanoPi NEO Air Version List(Hardware)'''
 +
::{| class="wikitable"
 +
|-
 +
|version || NanoPi NEO Air V1.0 || NanoPi NEO Air V1.1
 +
|-
 +
|Photo    || [[File:NanoPi-NEO_Air-V1.0.jpg |thumb|]] || [[File:NanoPi-NEO_Air-V1.1.jpg |thumb|]]
 +
|-
 +
|TF Card Slot  || ||① Air V1.1 uses a different card slot compared to V1.0. The card slot's position is moved towards the AP6212 chip by 1mm.
 +
|-
 +
|Audio Interface  || ②Air V1.0's audio interface is populated to four spots as follows<br>[[File:NanoPi-NEO-Air-Audio.bmp |NanoPi NEO-AIR Audio]]  ||② Air V1.1's audio interface is populated to four 2.54mm pitch through holes as follows<br>[[File:NanoPi-NEO-Air_V1.1-Audio.bmp |NanoPi NEO-AIR Audio]]
 +
|-
 +
|LED Color||  ③ Air v1.0 LED's color: PWR--Green, STAT--Blue || ③ Air v1.1 LED's Color: PWR--Red, STAT--Green
 +
|}
 +
 
 +
==Update Log==
 +
===Sep-28-2016===
 +
* Released English Version
 +
 
 +
===Nov-03-2016===
 +
* Updated Sections 1, 3.1 and 6.2
 +
 
 +
===Dec-13-2016===
 +
* Updated Section 6.2
 +
* Added Section 6.4
 +
 
 +
===Jan-10-2017===
 +
* Updated Section 5.2
 +
 
 +
===Feb-5-2017===
 +
* Updated Sections 6 and 9
 +
* Added sections 5.3 and 5.4
 +
 
 +
===May-25-2017===
 +
* Added section 3: software features
 +
* Added section 8: setup cross compiler for user space programs
 +
* Updated Sections 6.3: manage wifi with networkmanager
 +
 
 +
===June-4-2017===
 +
* Added section 3.5: support for NAS Dock
 +
 
 +
===June-8-2017===
 +
* Updated section 3.2: added support for RPi.GPIO_NP
 +
* Added section 6.9:  added support for RPi.GPIO_NP
 +
 
 +
===June-18-2017===
 +
* Updated section 7: compiling UbuntuCore
 +
* Added section 6.9:  added support for npi_config
 +
 
 +
===July-8-2017===
 +
* Updated section 3.2
 +
 
 +
===Oct-16-2017===
 +
* Updated sections 4 and 8
 +
* Added section 11
  
==资源链接==
+
===March-21-2019===
* 原理图
+
* Added section 7
** [http://wiki.friendlyarm.com/wiki/images/a/aa/NanoPi-NEO-AIR-1606-Schematic.pdf NanoPi-NEO-AIR-1606-Schematic.pdf]
+
* 尺寸图
+
** [http://wiki.friendlyarm.com/wiki/images/9/99/NanoPi-NEO-AIR-1606-dimensions%28dxf%29.zip pcb的dxf文件]
+
* H3芯片手册 [http://wiki.friendlyarm.com/wiki/images/4/4b/Allwinner_H3_Datasheet_V1.2.pdf Allwinner_H3_Datasheet_V1.2.pdf]
+

Revision as of 03:14, 21 May 2019

查看中文

Contents

1 Introduction

NanoPi NEO-AIR-1.jpg
NanoPi NEO-AIR-2.jpg
NanoPi NEO-AIR-3.jpg
  • The NanoPi NEO Air is a 40 x 40mm open source ARM board for makers.It uses an Allwinner H3 Quad Core A7 processor at 1.2GHz. Its pins are compatible with the NanoPi NEO(V 1.2) and its 24-pin header is compatible with Raspberry Pi's GPIO pin headers.
  • The NanoPi NEO AIR features 512MB of 16bit wide DDR3 RAM, 8GB eMMC and one MicroSD slot. It has WiFi & Bluetooth and DVP camera interface(YUV422). The DVP camera interface can support friendlyarm's 5M-pixel camera module
  • It has enhanced power circuit design and better heat dissipation.

2 Hardware Spec

  • CPU: Allwinner H3, Quad-core Cortex-A7 Up to 1.2GHz
  • RAM: 512MB DDR3 RAM
  • Storage: 8GB eMMC
  • WiFi: 802.11b/g/n
  • Bluetooth: 4.0 dual mode
  • DVP Camera: 0.5mm pitch 24 pin FPC seat
  • MicroUSB: OTG and power input
  • MicroSD Slot x 1
  • Debug Serial Port: 4Pin,2.54mm pitch pin header
  • GPIO1: 2.54mm spacing 24pin,It includes UART,SPI,I2C,GPIO
  • GPIO2: 2.54mm spacing 12pin,It includes USBx2,IR,SPDIF,I2S
  • PCB Size: 40 x 40mm
  • PCB layer: 6
  • Power Supply: DC 5V/2A
  • Working Temperature: -20℃ to 70℃
  • OS/Software: u-boot, UbuntuCore, eflasher
  • Weight: 7.5g(WITHOUT Pin-headers)

3 Software Features

3.1 uboot

  • supports fastboot to update uboot

3.2 UbuntuCore 16.04

  • mainline kernel: Linux-4.11.2
  • rpi-monitor: check system status and information
  • npi-config: system configuration utility for setting passwords, language, timezone, hostname, SSH and auto-login,and enabling/disabling i2c, spi, serial and PWM
  • networkmanager: manage network
  • software utility: RPi.GPIO_NP to access GPIO pins
  • welcome window with basic system information and status
  • auto-login with user account "pi" with access to npi-config
  • on first system boot file system will be automatically extended.
  • supports file system auto check and repair on system boot.
  • supports FriendlyElec's NanoHat-PCM5102A
  • supports FriendlyElec's Matrix_-_2.8_SPI_Key_TFT
  • supports file transfer with Bluetooth
  • supports FriendlyElec BakeBit modules
  • supports dynamic frequency scaling and voltage regulation

3.3 Ubuntu OLED

  • supports FriendlyElec's OLED module

3.4 Eflasher

  • supports flashing OS image to eMMC

3.5 Debian for NAS Dock

  • supports FriendlyElec's NAS Dock


4 Diagram, Layout and Dimension

4.1 Layout

NanoPi NEO-AIR Layout
NanoPi NEO Air Pinout
  • GPIO Pin Description
Pin# Name Linux gpio Pin# Name Linux gpio
1 SYS_3.3V 2 VDD_5V
3 I2C0_SDA/GPIOA12 4 VDD_5V
5 I2C0_SCL/GPIOA11 6 GND
7 GPIOG11 203 8 UART1_TX/GPIOG6 198
9 GND 10 UART1_RX/GPIOG7 199
11 UART2_TX/GPIOA0 0 12 GPIOA6 6
13 UART2_RTS/GPIOA2 2 14 GND
15 UART2_CTS/GPIOA3 3 16 UART1_RTS/GPIOG8 200
17 SYS_3.3V 18 UART1_CTS/GPIOG9 201
19 SPI0_MOSI/GPIOC0 64 20 GND
21 SPI0_MISO/GPIOC1 65 22 UART2_RX/GPIOA1 1
23 SPI0_CLK/GPIOC2 66 24 SPI0_CS/GPIOC3 67
  • USB/I2S/IR Pin Description
Pin# Name Description
1 VDD_5V 5V Power Out
2 USB-DP2 USB2 DP Signal
3 USB-DM2 USB2 DM Signal
4 USB-DP3 USB3 DP Signal
5 USB-DM3 USB3 DM Signal
6 GPIOL11/IR-RX GPIOL11 or IR Receive
7 SPDIF-OUT/GPIOA17 GPIOA17 or SPDIF-OUT
8 PCM0_SYNC/I2S0_LRC I2S/PCM Sample Rate Clock/Sync
9 PCM0_CLK/I2S0_BCK I2S/PCM Sample Rate Clock
10 PCM0_DOUT/I2S0_SDOUT I2S/PCM Serial Bata Output
11 PCM0_DIN/I2S0_SDIN I2S/PCM Serial Data Input
12 GND 0V
  • Debug Port(UART0)
Pin# Name
1 GND
2 VDD_5V
3 UART_TXD0/GPIOA4
4 UART_RXD0/GPIOA5/PWM0
  • Audio Port Description
Pin# Name Description
1 LL LINEOUTL, LINE-OUT Left Channel Output
2 LR LINEOUTR, LINE-OUT Right Channel Output
3 MICN MICIN1N, Microphone Negative Input
4 MICP MICIN1P, Microphone Positive Input
  • DVP Camera IF Pin Spec
Pin# Name Description
1, 2 SYS_3.3V 3.3V power output, to camera modules
7,9,13,15,24 GND Gound, 0V
3 I2C2_SCL I2C Clock Signal
4 I2C2_SDA I2C Data Signal
5 GPIOE15 Regular GPIO, control signals output to camera modules
6 GPIOE14 Regular GPIO, control signals output to camera modules
8 MCLK Clock signals output to camera modules
10 NC Not Connected
11 VSYNC vertical synchronization to CPU from camera modules
12 HREF/HSYNC HREF/HSYNC signal to CPU from camera modules
14 PCLK PCLK signal to CPU from camera modules
16-23 Data bit7-0 data signals



Note:
  1. SYS_3.3V: 3.3V power output
  2. VVDD_5V: 5V power input/output. When the external device’s voltage is greater than the MicroUSB's voltage the external device is charging the board otherwise the board powers the external device. The input range is 4.7V ~ 5.6V
  3. All pins are 3.3V, output current is 5mA
  4. For more details refer to the document:NanoPi-NEO-Air-1708-Schematic.pdf

4.2 Dimensional Diagram

NanoPi-NEO-AIR-1608-dimensions.png

5 Get Started

5.1 Essentials You Need

Before starting to use your NanoPi NEO AIR get the following items ready

  • NanoPi NEO AIR
  • microSD Card/TFCard: Class 10 or Above, minimum 8GB SDHC
  • microUSB power. A 5V/2A power is a must
  • A Host computer running Ubuntu 16.04 64 bit system

5.2 TF Cards We Tested

To make your NanoPi NEO AIR boot and run fast we highly recommend you use a Class10 8GB SDHC TF card or a better one. The following cards are what we used in all our test cases presented here:

  • SanDisk TF 8G Class10 Micro/SD TF card:

SanDisk MicroSD 8G

  • SanDisk TF128G MicroSDXC TF 128G Class10 48MB/S:

SanDisk MicroSD 128G

  • 川宇 8G C10 High Speed class10 micro SD card:

chuanyu MicroSD 8G

5.3 Install OS

5.3.1 Download Image Files

  • Get the following files from here download link to download image files and the flashing utility:
Image Files:
nanopi-neo-air_sd_friendlycore-xenial_3.4_armhf_YYYYMMDD.img.zip FriendlyCore, kernel:Linux-3.4
nanopi-neo-air_sd_friendlycore-xenial_4.14_armhf_YYYYMMDD.img.zip FriendlyCore, kernel:Linux-4.14
nanopi-neo-air_sd_openwrt_4.14_armhf_YYYYMMDD.img.zip OpenWrt, kernel:Linux-4.14
nanopi-neo-air_eflasher_friendlycore-xenial_4.14_armhf_YYYYMMDD.img.zip eflasher image, for flashing FriendlyCore(Linux-4.14) to eMMC
nanopi-neo-air_eflasher_openwrt_4.14_armhf_YYYYMMDD.img.zip eflasher image, for flashing OpenWrt(Linux-4.14) to eMMC
Flash Utility:
win32diskimager.rar Windows utility. Under Linux users can use "dd"

5.3.2 Comparison of Linux-3.4 and Linux-4.14

  • Our Linux-3.4 is provided by Allwinner. Allwinner has done a lot of customization work which on one hand contains many features and functions but on the other hand incurs overheat issues. If your application needs to use VPU or GPU you need to use the 3.4 kernel based ROM and use a heat sink together with your board.
  • Our Linux-4.14 is based on the mainline kernel. We will keep this kernel with the latest one released by Linus Torvalds. This kernel is stable and doesn't generate heat that much. If your application doesn't need to use VPU or GPU we recommend you to use this kernel.
  • For more details about the Linux-4.14 kernel refer to: Building U-boot and Linux for H5/H3/H2+

5.3.3 Linux

5.3.3.1 Flash to TF
  • FriendlyCore / Debian / Ubuntu / OpenWrt / DietPi are all based on a same Linux distribution and their installation methods are the same.
  • Extract the Linux image and win32diskimager.rar files. Insert a TF card(at least 8G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your TF card's drive, the wanted image file and click on "write" to start flashing the TF card.


After it is installed you will see the following window:
win32disk-finish

  • Insert this card into your board's BOOT slot and power on (with a 5V/2A power source). If the PWR LED is on and the STAT LED is blinking this indicates your board has successfully booted.
    ;
5.3.3.2 Flash to eMMC
5.3.3.2.1 Flash OS with eflasher Utility
  • For more details about eflasher refer to the wiki link: EFlasher
  • Extract the eflasher Image and win32diskimager.rar files. Insert a TF card(at least 4G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your TF card's drive, the wanted image file and click on "write" to start flashing the TF card.
  • Insert this card into your board's BOOT slot and power on (with a 5V/2A power source). If the green LED is on and the blue LED is blinking this indicates your board has successfully booted.
  • Connect the board to an HDMI monitor or an LCD and a USB mouse, and select an OS to start installation.

eflasher_friendlycore

  • If your board doesn't support HDMI or no monitor is connected you can select an OS by running the following command:
$ su root
$ eflasher

The password for "root" is "fa".

We take "nanopi-neo-air_eflasher_friendlycore-xenial_4.14_armhf_YYYYMMDD.img" as an example. After you run the "eflasher" command you will see the following messages:

eflasher_friendlycore1
Type "1", select writing friendlycore system to eMMC you will see the following messages:

eflasher_friendlycore2_h3
Type "yes" to start installation:

eflasher_friendlycore3
After it is done power off the system, take off the TF card, power on again your system will be booted from eMMC.

  • If you want to flash other system to eMMC you can download the whole images-for-eflasher directory and extract the package under that directory to the FRIENDLYARM partition of an installation SD card.

eflasher_friendlyarm_h3

6 Work with FriendlyCore

6.1 Introduction

FriendlyCore is a light Linux system without X-windows, based on ubuntu core, It uses the Qt-Embedded's GUI and is popular in industrial and enterprise applications.

Besides the regular Ubuntu Core's features FriendlyCore has the following additional features:

  • it integrates Qt4.8;
  • it integrates NetworkManager;
  • it has bluez and Bluetooth related packages;
  • it has alsa packages;
  • it has npi-config;
  • it has RPiGPIO, a Python GPIO module;
  • it has some Python/C demo in /root/ directory;
  • it enables 512M-swap partition;

6.2 System Login

  • If your board is connected to an HDMI monitor you need to use a USB mouse and keyboard.
  • If you want to do kernel development you need to use a serial communication board, ie a PSU-ONECOM board, which will

allow you to operate the board via a serial terminal.Here is a setup where we connect a board to a PC via the PSU-ONECOM and you can power on your board from either the PSU-ONECOM or its MicroUSB: PSU-ONECOM-AIR.jpg
You can use a USB to Serial conversion board too.
Make sure you use a 5V/2A power to power your board from its MicroUSB port:
Matrix-USB2UART NEO Air.jpg

  • FriendlyCore User Accounts:

Non-root User:

   User Name: pi
   Password: pi

Root:

   User Name: root
   Password: fa

The system is automatically logged in as "pi". You can do "sudo npi-config" to disable auto login.

  • Update packages
$ sudo apt-get update

6.3 Configure System with npi-config

The npi-config is a commandline utility which can be used to initialize system configurations such as user password, system language, time zone, Hostname, SSH switch , Auto login and etc. Type the following command to run this utility.

$ sudo npi-config

Here is how npi-config's GUI looks like:
npi-config

6.4 Develop Qt Application

Please refer to: How to Build and Install Qt Application for FriendlyELEC Boards

6.5 Setup Program to AutoRun

You can setup a program to autorun on system boot with npi-config:

sudo npi-config

Go to Boot Options -> Autologin -> Qt/Embedded, select Enable and reboot.

6.6 Extend TF Card's Section

When FriendlyCore is loaded the TF card's section will be automatically extended.You can check the section's size by running the following command:

$ df -h

6.7 Transfer files using Bluetooth

Take the example of transferring files to the mobile phone. First, set your mobile phone Bluetooth to detectable status, then execute the following command to start Bluetooth search.:

hcitool scan


Search results look like:

Scanning ...
    2C:8A:72:1D:46:02   HTC6525LVW

This means that a mobile phone named HTC6525LVW is searched. We write down the MAC address in front of the phone name, and then use the sdptool command to view the Bluetooth service supported by the phone:

sdptool browser 2C:8A:72:1D:46:02

Note: Please replace the MAC address in the above command with the actual Bluetooth MAC address of the mobile phone.
This command will detail the protocols supported by Bluetooth for mobile phones. What we need to care about is a file transfer service called OBEX Object Push. Take the HTC6525LVW mobile phone as an example. The results are as follows:

Service Name: OBEX Object Push
Service RecHandle: 0x1000b
Service Class ID List:
  "OBEX Object Push" (0x1105)
Protocol Descriptor List:
  "L2CAP" (0x0100)
  "RFCOMM" (0x0003)
    Channel: 12
  "OBEX" (0x0008)
Profile Descriptor List:
  "OBEX Object Push" (0x1105)
    Version: 0x0100

As can be seen from the above information, the channel used by the OBEX Object Push service of this mobile phone is 12, we need to pass it to the obexftp command, and finally the command to initiate the file transfer request is as follows:

obexftp --nopath --noconn --uuid none --bluetooth -b 2C:8A:72:1D:46:02 -B 12 -put example.jpg

Note: Please replace the MAC address, channel and file name in the above command with the actual one.

After executing the above commands, please pay attention to the screen of the mobile phone. The mobile phone will pop up a prompt for pairing and receiving files. After confirming, the file transfer will start.

Bluetooth FAQ:
1) Bluetooth device not found on the development board, try to open Bluetooth with the following command:

rfkill unblock 0

2) Prompt can not find the relevant command, you can try to install related software with the following command:

apt-get install bluetooth bluez obexftp openobex-apps python-gobject ussp-push

6.8 WiFi

For either an SD WiFi or a USB WiFi you can connect it to your board in the same way. The APXX series WiFi chips are SD WiFi chips. By default FriendlyElec's system supports most popular USB WiFi modules. Here is a list of the USB WiFi modules we tested:

Index Model
1 RTL8188CUS/8188EU 802.11n WLAN Adapter
2 RT2070 Wireless Adapter
3 RT2870/RT3070 Wireless Adapter
4 RTL8192CU Wireless Adapter
5 mi WiFi mt7601

You can use the NetworkManager utility to manage network. You can run "nmcli" in the commandline utility to start it. Here are the commands to start a WiFi connection:

  • Change to root
$ su root
  • Check device list
$ nmcli dev

Note: if the status of a device is "unmanaged" it means that device cannot be accessed by NetworkManager. To make it accessed you need to clear the settings under "/etc/network/interfaces" and reboot your system.

  • Start WiFi
$ nmcli r wifi on
  • Scan Surrounding WiFi Sources
$ nmcli dev wifi
  • Connect to a WiFi Source
$ nmcli dev wifi connect "SSID" password "PASSWORD" ifname wlan0

The "SSID" and "PASSWORD" need to be replaced with your actual SSID and password.If you have multiple WiFi devices you need to specify the one you want to connect to a WiFi source with iface
If a connection succeeds it will be automatically setup on next system reboot.

For more details about NetworkManager refer to this link: Use NetworkManager to configure network settings

If your USB WiFi module doesn't work most likely your system doesn't have its driver. For a Debian system you can get a driver from Debian-WiFi and install it on your system. For a Ubuntu system you can install a driver by running the following commands:

$ apt-get install linux-firmware

In general all WiFi drivers are located at the "/lib/firmware" directory.

6.9 Setup Wi-Fi Hotspot

Run the following command to enter AP mode:

$ su root
$ turn-wifi-into-apmode yes

You will be prompted to type your WiFi hotspot's name and password and then proceed with default prompts.
After this is done you will be able to find this hotspot in a neadby cell phone or PC. You can login to this board at 192.168.8.1:

$ ssh root@192.168.8.1

When asked to type a password you can type "fa".

To speed up your ssh login you can turn off your wifi by running the following command:

$ iwconfig wlan0 power off

To switch back to Station mode run the following command:

$ turn-wifi-into-apmode no

6.10 Bluetooth

Search for surrounding bluetooth devices by running the following command:

$ su root
$ hciconfig hci0 up
$ hcitool scan

You can run "hciconfig" to check bluetooth's status.

6.11 Ethernet Connection

If a board is connected to a network via Ethernet before it is powered on it will automatically obtain an IP with DHCP activated after it is powered up. If you want to set up a static IP refer to: Use NetworkManager to configure network settings

6.12 WiringPi and Python Wrapper

6.13 Set Audio Device

If your system has multiple audio devices such as HDMI-Audio, 3.5mm audio jack and I2S-Codec you can set system's default audio device by running the following commands.

  • After your board is booted run the following commands to install alsa packages:
$ apt-get update
$ apt-get install libasound2
$ apt-get install alsa-base
$ apt-get install alsa-utils
  • After installation is done you can list all the audio devices by running the following command. Here is a similar list you may see after you run the command:
$ aplay -l
card 0: HDMI
card 1: 3.5mm codec
card 2: I2S codec

"card 0" is HDMI-Audio, "card 1" is 3.5mm audio jack and "card 2" is I2S-Codec. You can set default audio device to HDMI-Audio by changing the "/etc/asound.conf" file as follows:

pcm.!default {
    type hw
    card 0
    device 0
}
 
ctl.!default {
    type hw
    card 0
}

If you change "card 0" to "card 1" the 3.5mm audio jack will be set to the default device.
Copy a .wav file to your board and test it by running the following command:

$ aplay /root/Music/test.wav

You will hear sounds from system's default audio device.
If you are using H3/H5/H2+ series board with mainline kernel, the easier way is using npi-config

6.14 Connect to DVP Camera CAM500B

For NanoPi-NEO-Air the CAM500B can work with both Linux-3.4 Kernel and Linux-4.14 Kernel.
The CAM500B camera module is a 5M-pixel camera with DVP interface. For more tech details about it you can refer to Matrix - CAM500B.

connect your board to camera module. Then boot OS, connect your board to a network, log into the board as root and run "mjpg-streamer":

$ cd /root/C/mjpg-streamer
$ make
$ ./start.sh

You need to change the start.sh script and make sure it uses a correct /dev/videoX node. You can check your camera's node by running the following commands:

$ apt-get install v4l-utils
$ v4l2-ctl -d /dev/video0 -D
Driver Info (not using libv4l2):
        Driver name   : sun6i-video
        Card type     : sun6i-csi
        Bus info      : platform:camera
        Driver version: 4.14.0
	...

The above messages indicate that "/dev/video0" is camera's device node.The mjpg-streamer application is an open source video steam server. After it is successfully started the following messages will be popped up:

 
$ ./start.sh
 i: Using V4L2 device.: /dev/video0
 i: Desired Resolution: 1280 x 720
 i: Frames Per Second.: 30
 i: Format............: YUV
 i: JPEG Quality......: 90
 o: www-folder-path...: ./www/
 o: HTTP TCP port.....: 8080
 o: username:password.: disabled
 o: commands..........: enabled

start.sh runs the following two commands:

export LD_LIBRARY_PATH="$(pwd)"
./mjpg_streamer -i "./input_uvc.so -d /dev/video0 -y 1 -r 1280x720 -f 30 -q 90 -n -fb 0" -o "./output_http.so -w ./www"

Here are some details for mjpg_streamer's major options:
-i: input device. For example "input_uvc.so" means it takes input from a camera;
-o: output device. For example "output_http.so" means the it transmits data via http;
-d: input device's subparameter. It defines a camera's device node;
-y: input device's subparameter. It defines a camera's data format: 1:yuyv, 2:yvyu, 3:uyvy 4:vyuy. If this option isn't defined MJPEG will be set as the data format;
-r: input device's subparameter. It defines a camera's resolution;
-f: input device's subparameter. It defines a camera's fps. But whether this fps is supported depends on its driver;
-q: input device's subparameter. It defines the quality of an image generated by libjpeg soft-encoding;
-n: input device's subparameter. It disables the dynctrls function;
-fb: input device's subparameter. It specifies whether an input image is displayed at "/dev/fbX";
-w: output device's subparameter. It defines a directory to hold web pages;

In our case the board's IP address was 192.168.1.230. We typed 192.168.1.230:8080 in a browser and were able to view the images taken from the camera's. Here is what you would expect to observe:
mjpg-streamer-cam500a
The mjpg-streamer utility uses libjpeg to software-encode steam data. The Linux-4.14 based ROM currently doesn't support hardware-encoding. If you use a H3 boards with Linux-3.4 based ROM you can use the ffmpeg utility to hardware-encode stream data and this can greatly release CPU's resources and speed up encoding:

$ ffmpeg -t 30 -f v4l2 -channel 0 -video_size 1280x720 -i /dev/video0 -pix_fmt nv12 -r 30 \
        -b:v 64k -c:v cedrus264 test.mp4

By default it records a 30-second video. Typing "q" stops video recording. After recording is stopped a test.mp4 file will be generated.

6.15 Connect to USB Camera(FA-CAM202)

The FA-CAM202 is a 200M USB camera. Connect your board to camera module. Then boot OS, connect your board to a network, log into the board as root and run "mjpg-streamer":

$ cd /root/C/mjpg-streamer
$ make
$ ./start.sh

You need to change the start.sh script and make sure it uses a correct /dev/videoX node. You can check your camera's node by running the following commands:

$ apt-get install v4l-utils
$ v4l2-ctl -d /dev/video0 -D
Driver Info (not using libv4l2):
        Driver name   : uvcvideo
        Card type     : HC 3358+2100: HC 3358+2100  / USB 2.0 Camera: USB 2.0 Camera
        Bus info      : usb-1c1b000.usb-1
	...

The above messages indicate that "/dev/video0" is camera's device node.The mjpg-streamer application is an open source video steam server. After it is successfully started the following messages will be popped up:

 
$ ./start.sh
 i: Using V4L2 device.: /dev/video0
 i: Desired Resolution: 1280 x 720
 i: Frames Per Second.: 30
 i: Format............: YUV
 i: JPEG Quality......: 90
 o: www-folder-path...: ./www/
 o: HTTP TCP port.....: 8080
 o: username:password.: disabled
 o: commands..........: enabled

start.sh runs the following two commands:

export LD_LIBRARY_PATH="$(pwd)"
./mjpg_streamer -i "./input_uvc.so -d /dev/video0 -y 1 -r 1280x720 -f 30 -q 90 -n -fb 0" -o "./output_http.so -w ./www"

Here are some details for mjpg_streamer's major options:
-i: input device. For example "input_uvc.so" means it takes input from a camera;
-o: output device. For example "output_http.so" means the it transmits data via http;
-d: input device's subparameter. It defines a camera's device node;
-y: input device's subparameter. It defines a camera's data format: 1:yuyv, 2:yvyu, 3:uyvy 4:vyuy. If this option isn't defined MJPEG will be set as the data format;
-r: input device's subparameter. It defines a camera's resolution;
-f: input device's subparameter. It defines a camera's fps. But whether this fps is supported depends on its driver;
-q: input device's subparameter. It defines the quality of an image generated by libjpeg soft-encoding;
-n: input device's subparameter. It disables the dynctrls function;
-fb: input device's subparameter. It specifies whether an input image is displayed at "/dev/fbX";
-w: output device's subparameter. It defines a directory to hold web pages;

In our case the board's IP address was 192.168.1.230. We typed 192.168.1.230:8080 in a browser and were able to view the images taken from the camera's. Here is what you would expect to observe:
mjpg-streamer-cam500a

6.16 Check CPU's Working Temperature

You can get CPU's working temperature by running the following command:

$ cpu_freq 
Aavailable frequency(KHz):
        480000 624000 816000 1008000
Current frequency(KHz):
        CPU0 online=1 temp=26548C governor=ondemand freq=624000KHz
        CPU1 online=1 temp=26548C governor=ondemand freq=624000KHz
        CPU2 online=1 temp=26548C governor=ondemand freq=624000KHz
        CPU3 online=1 temp=26548C governor=ondemand freq=624000KHz

This message means there are currently four CPUs working. All of their working temperature is 26.5 degree in Celsius and each one's clock is 624MHz.
Set CPU frequency:

$ cpu_freq -s 1008000
Aavailable frequency(KHz):
        480000 624000 816000 1008000
Current frequency(KHz):
        CPU0 online=1 temp=36702C governor=userspace freq=1008000KHz
        CPU1 online=1 temp=36702C governor=userspace freq=1008000KHz
        CPU2 online=1 temp=36702C governor=userspace freq=1008000KHz
        CPU3 online=1 temp=36702C governor=userspace freq=1008000KHz


6.17 Test Infrared Receiver

Note: Please Check your board if IR receiver exist.
By default the infrared function is disabled you can enable it by using the npi-config utility:

$ npi-config
    6 Advanced Options     Configure advanced settings
        A8 IR              Enable/Disable IR
            ir Enable/Disable ir[enabled]

Reboot your system and test its infrared function by running the following commands:

$ apt-get install ir-keytable
$ echo "+rc-5 +nec +rc-6 +jvc +sony +rc-5-sz +sanyo +sharp +mce_kbd +xmp" > /sys/class/rc/rc0/protocols   # Enable infrared
$ ir-keytable -t
Testing events. Please, press CTRL-C to abort.

"ir-keytable -t" is used to check whether the receiver receives infrared signals. You can use a remote control to send infrared signals to the receiver. If it works you will see similar messages as follows:

1522404275.767215: event type EV_MSC(0x04): scancode = 0xe0e43
1522404275.767215: event type EV_SYN(0x00).
1522404278.911267: event type EV_MSC(0x04): scancode = 0xe0e42
1522404278.911267: event type EV_SYN(0x00).

6.18 Run Qt Demo

Run the following command

$ sudo /opt/QtE-Demo/run.sh

Here is what you expect to observe. This is an open source Qt Demo:
K2-QtE

6.19 How to install and use docker (for armhf system)

6.19.1 How to Install Docker

Run the following commands:

sudo apt-get update
sudo apt-get install docker.io

6.19.2 Test Docker installation

Test that your installation works by running the simple docker image:

git clone https://github.com/friendlyarm/debian-jessie-arm-docker
cd debian-jessie-arm-docker
./rebuild-image.sh
./run.sh

6.20 Using 4G Module EC20 on FriendlyCore

6.20.1 Step1:Compile the quectel-CM command line tool on the development board

Compile and install quectel-CM into the /usr/bin/ directory by entering the following command:

git clone https://github.com/friendlyarm/quectel-cm.git
cd quectel-cm/
make
cp quectel-CM /usr/bin/

6.20.2 Step2:Add udhcpc script

The quectel-CM tool will call the udhcpc script. we need to create a udhcpc script for it. Please create a new file with the editor you are familiar with. The file name is: /usr/share/udhcpc/default.script, the content is as follows:

#!/bin/sh
 
# udhcpc script edited by Tim Riker <Tim@Rikers.org>
 
[ -z "$1" ] && echo "Error: should be called from udhcpc" && exit 1
 
RESOLV_CONF="/etc/resolv.conf"
[ -n "$broadcast" ] && BROADCAST="broadcast $broadcast"
[ -n "$subnet" ] && NETMASK="netmask $subnet"
 
case "$1" in
  deconfig)
    /sbin/ifconfig $interface 0.0.0.0
    ;;
 
  renew|bound)
    /sbin/ifconfig $interface $ip $BROADCAST $NETMASK
 
    if [ -n "$router" ] ; then
      echo "deleting routers"
      while route del default gw 0.0.0.0 dev $interface ; do
        :
      done
 
      for i in $router ; do
        route add default gw $i dev $interface
      done
    fi
 
    echo -n > $RESOLV_CONF
    [ -n "$domain" ] && echo search $domain >> $RESOLV_CONF
    for i in $dns ; do
      echo adding dns $i
      echo nameserver $i >> $RESOLV_CONF
    done
    ;;
esac
 
exit 0

Assign executable permissions with the following command:

chmod 755 /usr/share/udhcpc/default.script

6.20.3 Step3:Start 4G dialing

Start the dialing by entering the following command:

quectel-CM &

If the dialing is successful, the screen will output information such as the IP address, as shown below:

root@NanoPC-T4:~# quectel-CM &
[1] 5364
root@NanoPC-T4:~# [05-15_08:23:13:719] WCDMA&LTE_QConnectManager_Linux&Android_V1.1.34
[05-15_08:23:13:720] quectel-CM profile[1] = (null)/(null)/(null)/0, pincode = (null)
[05-15_08:23:13:721] Find /sys/bus/usb/devices/3-1 idVendor=2c7c idProduct=0125
[05-15_08:23:13:722] Find /sys/bus/usb/devices/3-1:1.4/net/wwan0
[05-15_08:23:13:722] Find usbnet_adapter = wwan0
[05-15_08:23:13:723] Find /sys/bus/usb/devices/3-1:1.4/usbmisc/cdc-wdm0
[05-15_08:23:13:723] Find qmichannel = /dev/cdc-wdm0
[05-15_08:23:13:739] cdc_wdm_fd = 7
[05-15_08:23:13:819] Get clientWDS = 18
[05-15_08:23:13:851] Get clientDMS = 2
[05-15_08:23:13:884] Get clientNAS = 2
[05-15_08:23:13:915] Get clientUIM = 1
[05-15_08:23:13:947] Get clientWDA = 1
[05-15_08:23:13:979] requestBaseBandVersion EC20CEFHLGR06A01M1G_OCPU_BETA1210
[05-15_08:23:14:043] requestSetEthMode QMUXResult = 0x1, QMUXError = 0x46
[05-15_08:23:14:075] requestGetSIMStatus SIMStatus: SIM_READY
[05-15_08:23:14:107] requestGetProfile[1] cmnet///0
[05-15_08:23:14:139] requestRegistrationState2 MCC: 460, MNC: 0, PS: Attached, DataCap: LTE
[05-15_08:23:14:171] requestQueryDataCall IPv4ConnectionStatus: DISCONNECTED
[05-15_08:23:14:235] requestRegistrationState2 MCC: 460, MNC: 0, PS: Attached, DataCap: LTE
[05-15_08:23:14:938] requestSetupDataCall WdsConnectionIPv4Handle: 0xe16e4540
[05-15_08:23:15:002] requestQueryDataCall IPv4ConnectionStatus: CONNECTED
[05-15_08:23:15:036] ifconfig wwan0 up
[05-15_08:23:15:052] busybox udhcpc -f -n -q -t 5 -i wwan0
[05-15_08:23:15:062] udhcpc (v1.23.2) started
[05-15_08:23:15:077] Sending discover...
[05-15_08:23:15:093] Sending select for 10.22.195.252...
[05-15_08:23:15:105] Lease of 10.22.195.252 obtained, lease time 7200
[05-15_08:23:15:118] deleting routers
SIOCDELRT: No such process
[05-15_08:23:15:132] adding dns 221.179.38.7
[05-15_08:23:15:132] adding dns 120.196.165.7

6.20.4 Test 4G connection

Ping a domain name to see if DNS resolution is already working:

root@NanoPC-T4:~# ping www.baidu.com
PING www.a.shifen.com (183.232.231.174) 56(84) bytes of data.
64 bytes from 183.232.231.174 (183.232.231.174): icmp_seq=1 ttl=56 time=74.3 ms
64 bytes from 183.232.231.174 (183.232.231.174): icmp_seq=2 ttl=56 time=25.1 ms
64 bytes from 183.232.231.174 (183.232.231.174): icmp_seq=3 ttl=56 time=30.8 ms
64 bytes from 183.232.231.174 (183.232.231.174): icmp_seq=4 ttl=56 time=29.1 ms
64 bytes from 183.232.231.174 (183.232.231.174): icmp_seq=5 ttl=56 time=29.2 ms

6.20.5 Test the speed of 4G

wget -O - https://raw.githubusercontent.com/sivel/speedtest-cli/master/speedtest.py | python

The test results obtained are as follows:

Retrieving speedtest.net configuration...
Testing from China Mobile Guangdong (117.136.40.167)...
Retrieving speedtest.net server list...
Selecting best server based on ping...
Hosted by ChinaTelecom-GZ (Guangzhou) [2.51 km]: 62.726 ms
Testing download speed................................................................................
Download: 32.93 Mbit/s
Testing upload speed................................................................................................
Upload: 5.58 Mbit/s

6.21 Video Play and Recording

The NanoPi NEO Air have an audio interface (2.54mm pin header) whose pin spec is as follows:

Pin# Name Description
1 LL LINE-OUT Left Channel Output
2 LR LINE-OUT Right Channel Output
3 MN Microphone Negative Input
4 MP Microphone Positive Input

Here is a hardware setup:
Earphone
Make sure your board is connected to an audio device before proceed with the following steps
List audio devices:

$ aplay -l
**** List of PLAYBACK Hardware Devices ****
card 0: Codec [H3 Audio Codec], device 0: CDC PCM Codec-0 []
  Subdevices: 1/1
  Subdevice #0: subdevice #0

Both Allwinner H5 and H3 have an internal codec device which is recognized as an [H3 Audio Codec] card device in the kernel.

Play video:

$ aplay /root/Music/test.wav -D plughw:0

Parameter -D plughw:0 means device "card 0" is in use. Make sure you use a correctly recognized card device.
Record video:

$ arecord -f cd -d 5 test.wav

7 Work with OpenWrt

7.1 Introduction

OpenWrt is a highly extensible GNU/Linux distribution for embedded devices.Unlike many other distributions for routers, OpenWrt is built from the ground up to be a full-featured, easily modifiable operating system for embedded devices. In practice, this means that you can have all the features you need with none of the bloat, powered by a modern Linux kernel. For more details you can refer to:OpenWrt website.

7.2 Configure WiFi

  • Make sure you install a WiFi antenna on your board.
  • By default the NanoPi NEO Air's OpenWrt is set to AP mode. The default AP hotspot's name is like "OpenWrt-10:d0:7a:de:3d:92" and it doesn't have a password. You can connect a smart phone or PC to it.
  • The board's AP hotspot IP address falls into 192.168.2.x. Open a browser in your phone or PC, type 192.168.2.1 in the address bar and you will be able to visit the LuCI GUI:

phone_luci
The default user is root without a password. You can click on "Login" to sign in.

  • The NEO-Air has only one network device: wlan0. Therefore if you want to visit the internet from the board you need to switch from AP mode to STA mode. Here are the steps.

1) After you load the LuCI Web page, click on Network ---> Wireless and open the configuration page:
openwrt-wireless
2) Click on "Scan" to search surrounding hotspots:
openwrt-wireless-scan
3) Click on "Join network":
openwrt-wireless-join
4) Fill your password in the "WPA passphrase" field and click on "Save & Apply":
openwrt-wireless-save
Your board will switch from AP mode to STA mode, "OpenWrt-10:d0:7a:de:3d:92" will be removed” and the page will be disconnected. In 30 seconds you can check if your board's wlan0 will be assigned an IP.

7.3 System Login

  • Login via Serial Communication

Here is a hardware setup:
Connect the following serial communication board to your board and power on the whole system from the serial board's DC or MicroUSB port:
PSU-ONECOM-AIR.jpg

By default you will login as root without a password. You can set your password by commanding "passwd".
R1-login
When your board loads OS for the first time the TF card's rootfs system in your board will be automatically partitioned to its max capacity:
resize_rootfs
Be patient for this process to be done.

  • Login via SSH

Make sure you connect your board to the internet following the steps in <Configure WiFi> and your board's wlan0 IP address is 192.168.1.163. Run the following commands to login via SSH:

$ ssh root@192.168.1.163

By default you will login as root without a password.

  • Login via Web

OpenWrt supports web login via the LuCI Web GUI. Configure your system following the steps in <Login via SSH>. In our test the board's wlan0 IP address was 192.168.1.163. Type your IP address in a browser and you will be able to load the OpenWrt-LuCI page:
If your board is connected to the internet and your board's wlan0 is assigned an IP address, after you type the IP address in a browser you will be able to load the OpenWrt-LuCI page:
R1-OpenWrt-LuCI
By default you will login as root without a password. After click on "Login" you will sign in.

7.4 Manage Software Packages

OpenWrt has a package management utility: opkg. You can get its details by running the following command:

$ opkg
Package Manipulation:
        update                  Update list of available packages
        upgrade <pkgs>          Upgrade packages
        install <pkgs>          Install package(s)
        configure <pkgs>        Configure unpacked package(s)
        remove <pkgs|regexp>    Remove package(s)
        flag <flag> <pkgs>      Flag package(s)
         <flag>=hold|noprune|user|ok|installed|unpacked (one per invocation)
 
Informational Commands:
        list                    List available packages
        list-installed          List installed packages
        list-upgradable         List installed and upgradable packages
        list-changed-conffiles  List user modified configuration files
        files <pkg>             List files belonging to <pkg>
        search <file|regexp>    List package providing <file>
        find <regexp>           List packages whose name or description matches <regexp>
        info [pkg|regexp]       Display all info for <pkg>
        status [pkg|regexp]     Display all status for <pkg>
        download <pkg>          Download <pkg> to current directory
...

These are just part of the manual. Here are some popular opkg commands.

  • Update Package List

Before you install a package you'd better update the package list:

$ opkg update
  • Check Available Packages
$ opkg list

At the time of writing there are 3241 packages available.

  • Check Installed Packages
$ opkg list-installed

At the time of writing 124 packages have been installed.

  • Install/Delete Packages:
$ opkg install <pkgs>
$ opkg remove <pkgs>
  • Check Files Contained in Installed Packages:
$ opkg files <pkg>
  • Install Chinese Language Package for LuCI:
$ opkg install luci-i18n-base-zh-cn
  • Check Changed Files:
$ opkg list-changed-conffiles

7.5 Check System Status

  • Check CPU Temperature & Frequency:
$ cpu_freq
CPU0 online=1 temp=26581 governor=ondemand cur_freq=480000
CPU1 online=1 temp=26581 governor=ondemand cur_freq=480000
CPU2 online=1 temp=26581 governor=ondemand cur_freq=480000
CPU3 online=1 temp=26581 governor=ondemand cur_freq=480000

These messages mean four CPU cores are working online. Each core's temperature is 26.5 degrees. Each core's governor is on demand and the frequency is 480 MHz。

  • Check System Status on OpenWrt-LuCI Web Page:

After you load the OpenWrt-LuCI page, click on "Statistics ---> Graphs" and you will be able to check all the statistics:
1) System Load:
statistics_system_load
2) RAM:
statistics_memory
3) CPU Temperature:
statistics_thermal
"Statistics" is collected by the luci-app-statistics package. The luci-app-statistics package uses the Collectd utility to collect statistics and presents them using the RRDtool utility.
If you want to get more statistics you can install various collectd-mod-* packages. All collectd-mod-* packages use the same configuration file: /etc/config/luci_statistics.

8 Make Your Own FriendlyCore

8.1 Use Linux-4.14 BSP

The NanoPi NEO Air has gotten support for kernel Linux-4.14. For more details about how to use mainline U-boot and Linux-4.14 refer to :Building U-boot and Linux for H5/H3/H2+

8.2 Use Allwinner's Linux-3.4 BSP

8.2.1 Preparations

Visit this link download link and enter the "sources/nanopi-H3-bsp" directory and download all the source code.Use the 7-zip utility to extract it and a lihee directory and an Android directory will be generated. You can check that by running the following command:

$ ls ./
android lichee

Or you can get it from our github:

$ git clone https://github.com/friendlyarm/h3_lichee.git lichee

Note: "lichee" is the project name named by Allwinner for its CPU's source code which contains the source code of U-boot, Linux kernel and various scripts.

8.2.2 Install Cross Compiler

Visit this site download link, enter the "toolchain" directory, download the cross compiler "gcc-linaro-arm.tar.xz" and copy it to the "lichee/brandy/toochain/" directory.

8.2.3 Compile lichee Source Code

Compilation of the H3's BSP source code must be done under a PC running a 64-bit Linux.The following cases were tested on Ubuntu-14.04 LTS-64bit:

$ sudo apt-get install gawk git gnupg flex bison gperf build-essential \
zip curl libc6-dev libncurses5-dev:i386 x11proto-core-dev \
libx11-dev:i386 libreadline6-dev:i386 libgl1-mesa-glx:i386 \
libgl1-mesa-dev g++-multilib mingw32 tofrodos \
python-markdown libxml2-utils xsltproc zlib1g-dev:i386 u-boot-tools

Enter the lichee directory and un the following command to compile the whole package:

$ cd lichee/fa_tools
$ ./build.sh -b nanopi-air -p linux -t all

After this compilation succeeds a u-boot, Linux kernel and kernel modules will be generated.
Note: the lichee directory contains a cross-compiler we have setup. When the build.sh script runs it will automatically call this cross-compiler.

Type the following command to update the U-boot on your TF card:

$ cd lichee/fa_tools/
$ ./fuse.sh -d /dev/sdX -p linux -t u-boot

Note: you need to replace "/dev/sdx" with the device name in your system.
The boot.img and kernel modules are under the "linux-3.4/output" directory. You can copy the new boot.img file to your TF card's boot partition.

8.3 Compile U-boot

You can compile u-boot individually by using the following command:

$ cd lichee/fa_tools/
$ ./build.sh -b nanopi-air -p linux -t u-boot

The gen_script.sh script patches the U-boot with Allwinner features. A U-boot without these features cannot work.
Type the following command to update the U-boot on your TF card:

$ cd lichee/fa_tools/
$ ./fuse.sh -d /dev/sdX -p linux -t u-boot

Note: you need to replace "/dev/sdx" with the device name in your system.

8.4 Compile Linux Kernel

If you want to compile the Linux kernel run the following command:

$ cd lichee/fa_tools/
$ ./build.sh -b nanopi-air -p linux -t kernel

After the compilation is done a uImage and its kernel modules will be generated under "linux-3.4/output".

8.5 Clean Source Code

$ cd lichee/fa_tools/
$ ./build.sh -b nanopi-air -p linux -t clean


9 3D Printing Files

NanoPi NEO Air 3D printed housing
NanoPi NEO Air V1.0 3D printing files
[http:// NanoPi NEO Air V1.1 3D printing files]

10 Other OS Support

10.1 DietPi_NanoPiNEO-armv7-(Jessie)

DietPi is an extremely lightweight Debian Jessie OS. Its image file starts at 400MB and nearly 3x lighter than 'Raspbian Lite'.It is pre-installed with DietPi-RAMLog. These features enable users to get the best performance of a device.
The following steps are for reference only. FriendlyElec doesn't provide technical support for them.
Installation guide:

  • Download the image file "DietPi_NanoPiNEO-armv7-(Jessie)" from DietPi_NanoPiNEO-armv7-(Jessie)
  • Extract the package and use the win32diskimager to write it to a MicroSD card under Windows.
  • Insert this MicroSD card to your NanoPi NEO and power up.

Username:root , Password: dietpi

11 Developer Guide

11.1 Linux 4.14 BSP

11.2 Linux 3.4 BSP

  • Allwinner's document is located at DVD/doc/allwinner-h3-doc.zip,download

11.3 OpenWrt

11.4 ROM

11.5 Hardware access

12 Resources

The following BakeBit modules can work with BakeBit - NanoHat Hub:

13 List of Version Differences

  • NanoPi NEO Air Version List(Hardware)
version NanoPi NEO Air V1.0 NanoPi NEO Air V1.1
Photo
NanoPi-NEO Air-V1.0.jpg
NanoPi-NEO Air-V1.1.jpg
TF Card Slot ① Air V1.1 uses a different card slot compared to V1.0. The card slot's position is moved towards the AP6212 chip by 1mm.
Audio Interface ②Air V1.0's audio interface is populated to four spots as follows
NanoPi NEO-AIR Audio
② Air V1.1's audio interface is populated to four 2.54mm pitch through holes as follows
NanoPi NEO-AIR Audio
LED Color ③ Air v1.0 LED's color: PWR--Green, STAT--Blue ③ Air v1.1 LED's Color: PWR--Red, STAT--Green

14 Update Log

14.1 Sep-28-2016

  • Released English Version

14.2 Nov-03-2016

  • Updated Sections 1, 3.1 and 6.2

14.3 Dec-13-2016

  • Updated Section 6.2
  • Added Section 6.4

14.4 Jan-10-2017

  • Updated Section 5.2

14.5 Feb-5-2017

  • Updated Sections 6 and 9
  • Added sections 5.3 and 5.4

14.6 May-25-2017

  • Added section 3: software features
  • Added section 8: setup cross compiler for user space programs
  • Updated Sections 6.3: manage wifi with networkmanager

14.7 June-4-2017

  • Added section 3.5: support for NAS Dock

14.8 June-8-2017

  • Updated section 3.2: added support for RPi.GPIO_NP
  • Added section 6.9: added support for RPi.GPIO_NP

14.9 June-18-2017

  • Updated section 7: compiling UbuntuCore
  • Added section 6.9: added support for npi_config

14.10 July-8-2017

  • Updated section 3.2

14.11 Oct-16-2017

  • Updated sections 4 and 8
  • Added section 11

14.12 March-21-2019

  • Added section 7