Difference between revisions of "NanoPi NEO2"

From FriendlyARM WiKi
Jump to: navigation, search
(Diagram, Layout and Dimension)
(90 intermediate revisions by 4 users not shown)
Line 1: Line 1:
[[NanoPi NEO2|English]]
+
[[NanoPi NEO2/zh|查看中文]]
==介绍==
+
[[File:NanoPi NEO2-1.jpg|thumb|frameless|300px|概览]]
+
[[File:NanoPi NEO2-2.jpg|thumb|frameless|300px|正面]]
+
[[File:NanoPi NEO2-3.jpg|thumb|frameless|300px|背面]]
+
* NanoPI NEO2是友善之臂团队推出的全新一代超小型ARM计算机,它采用全志64位四核A53处理器H5, 内置六核Mail450 GPU, 集成512M DDR3内存,可支持运行Ubuntu Core,Armbian等嵌入式操作系统。NEO2依然小巧精致,尺寸如一,并且和第一代NEO接口兼容。
+
* 更为惊人的是,在极其有限的空间里,NEO2采用了千兆以太网接口,并带有1个标准USB接口,因此非常适合对体积要求高,数据传输量大,数据传输速度快,和更高计算性能的物联网应用;它也是创客、高端极客们发挥创意的绝佳选择。
+
  
==资源特性==
+
==Introduction==
 +
[[File:NanoPi NEO2-1.jpg|thumb|frameless|300px|Overview]]
 +
[[File:NanoPi NEO2-2.jpg|thumb|frameless|300px|Front]]
 +
[[File:NanoPi NEO2-3.jpg|thumb|frameless|300px|Back]]
 +
* The NanoPi NEO2 is a newly released super tiny ARM board by FriendlyElec. It uses Allwinner’s 64-bit H5 quad-core SoC (ARM Cortex-A53). It has internal hexa-core Mail450 GPU, 512M DDR3 RAM. A UbuntuCore and Armbian image files are ready for it.
 +
* The NanoPi NEO2 inherits NEO's form factor and has compatible interfaces and ports with NEO. In addition in such a small dimension it has Gbps Ethernet and one USB host port. These features make it especially suitable for applications that require high data throughput , speedy data transmission and high performance. Hobbyists and makers will just love it.
 +
 
 +
==Hardware Spec==
 
* CPU: Allwinner H5, Quad-core 64-bit high-performance Cortex A53
 
* CPU: Allwinner H5, Quad-core 64-bit high-performance Cortex A53
 
* DDR3 RAM: 512MB
 
* DDR3 RAM: 512MB
* 网络:10/100/1000M 以太网口, 采用RTL8211E-VB-CG网络传输芯片
+
* Connectivity: 10/100/1000M Ethernet, RTL8211E-VB-CG chip
* USB Host: 3路,其中1路为标准A型口,另外2路位于GPIO2
+
* USB Host: USB Type A x 1 and USB pin header x 2
* MicroSD Slot:1个, 支持启动和存储系统
+
* MicroSD Slot: MicroSD x 1 for system boot and storage
* 指示灯: 2个, 分别用于电源, 和系统状态(蓝色)
+
* LED: Power LED x 1, System LED x 1
* GPIO1: 24pin, 2.54mm间距双排针,兼容树莓派GPIO之管脚1-24, 含UART, SPI, I2C, IO等管脚资源
+
* GPIO1: 2.54mm pitch 24 pin-header, compatible with Raspberry Pi's GPIO pin1 - pin 24. It includes UART, SPI, I2C, IO etc
* GPIO2: 12pin, 2.54mm间距双排针, 含USB, 红外接收, I2S, IO等管脚资源
+
* GPIO2: 2.54mm pitch 12 pin-header. It includes USB, IR receiver, I2S, IO etc
* 调试串口: 4Pin, 2.54mm间距单排针
+
* Serial Debug Port: 2.54mm pitch 4pin-header
* 音频输入和输出: 5Pin, 2.0mm间距单排针
+
* Audio In/Out: 2.54mm pitch 4 pin-header
* PCB Size: 40 x 40mm
+
* MicroUSB: Power input(5V/2A) and OTG
* MicroUSB: 供电(5V/2A),并具备OTG功能
+
* PCB Dimension: 40 x 40mm
* OS/Software: u-boot,Ubuntu Core
+
* Working Temperature: -20℃ to 70℃
 
* Weight: 13g(WITHOUT Pin-headers)
 
* Weight: 13g(WITHOUT Pin-headers)
 +
* OS/Software: u-boot,Ubuntu Core
 +
 +
<!--
 +
==Software Features==
 +
===uboot===
 +
* mainline uboot released on May 2017
 +
<!---
 +
* supports fastboot to update uboot
 +
--->
 +
 +
===UbuntuCore 16.04===
 +
* 64-bit system
 +
* mainline kernel: Linux-4.14
 +
* rpi-monitor: check system status and information
 +
* npi-config: system configuration utility for setting passwords, language, timezone, hostname, SSH and auto-login,and enabling/disabling i2c, spi, serial and PWM. When enabling PWM it will prompt that Serial debug port will be disabled.
 +
* software utility: wiringNP to access GPIO pins
 +
* software utility: RPi.GPIO_NP to access GPIO pins
 +
* networkmanager: manage network
 +
* system log output from serial port
 +
<!---
 +
* nano editor
 +
* auto-login with user account "pi" with access to npi-config
 +
* sudoers include "fa"
 +
* on first system boot file system will be automatically extended.
 +
* supports file system auto check and repair on system boot.
 +
* supports FriendlyElec's [http://wiki.friendlyarm.com/wiki/index.php/NanoHat_PCM5102A NanoHat-PCM5102A] 
 +
--->
 +
* supports USB WiFi module: refer to [[#Connect USB WiFi to NEO]]
 +
* supports audio recording and playing with 3.5mm audio jack
 +
* supports I2C 0/1
 +
<!---
 +
* supports dynamic frequency scaling and voltage regulation
 +
* relieves overheat compared to kernel Linux-3.4
 +
--->
 +
* fixed MAC address
 +
 +
===Ubuntu OLED===
 +
* mainline kernel: Linux-4.14
 +
* supports FriendlyElec's OLED module
 +
 +
===Debian===
 +
* welcome window with basic system information and status
 +
 +
===Debian for NAS Dock===
 +
* mainline kernel: Linux-4.14
 +
* supports FriendlyElec's NAS Dock
 +
* optimized OpenMediaVault configuration options
 +
* allocated swap section
 +
-->
  
==接口布局和尺寸==
+
==Diagram, Layout and Dimension==
===接口布局===
+
===Layout===
[[File:NanoPi-NEO2-layout.jpg |thumb|600px|NanoPi NEO2接口布局]]
+
[[File:NanoPi-NEO2-layout.jpg |thumb|600px|NanoPi NEO2 Layout]]
 
[[File:NEO2 pinout-02.jpg|thumb|frameless|600px|pinout]]
 
[[File:NEO2 pinout-02.jpg|thumb|frameless|600px|pinout]]
  
* '''GPIO管脚定义'''
+
* '''GPIO Pin Description'''
 
::{| class="wikitable"
 
::{| class="wikitable"
 
|-
 
|-
Line 35: Line 85:
 
|1    || SYS_3.3V  ||    ||2    || VDD_5V ||
 
|1    || SYS_3.3V  ||    ||2    || VDD_5V ||
 
|-
 
|-
|3    || I2C0_SDA/GPIOA12 || 12  ||    ||4    || VDD_5V ||
+
|3    || I2C0_SDA/GPIOA12 || 12  ||4    || VDD_5V ||
 
|-  
 
|-  
|5    || I2C0_SCL/GPIOA11 || 11    ||    ||6    || GND    ||
+
|5    || I2C0_SCL/GPIOA11 || 11    ||6    || GND    ||
 
|-
 
|-
 
|7    || GPIOG11    || 203 ||8    || UART1_TX/GPIOG6 || 198
 
|7    || GPIOG11    || 203 ||8    || UART1_TX/GPIOG6 || 198
Line 58: Line 108:
 
|}
 
|}
  
* '''USB/Audio/IR 定义'''
+
* '''USB/Audio/IR Pin Descripton'''
 
::{| class="wikitable"
 
::{| class="wikitable"
 
|-
 
|-
Line 95: Line 145:
 
|Pin# || Name      ||  Description   
 
|Pin# || Name      ||  Description   
 
|-
 
|-
|1    || MICIN1P   ||  Microphone Positive Input  
+
|1    || MP   ||  Microphone Positive Input  
 
|-
 
|-
|2    || MICIN1N   ||  Microphone Negative Input     
+
|2    || MN   ||  Microphone Negative Input     
 
|-  
 
|-  
|3    || LINEOUTR || LINE-OUT Right Channel Output  
+
|3    || LR || LINE-OUT Right Channel Output  
 
|-
 
|-
|4    || GND      || 0V
+
|4    || LL || LINE-OUT Left Channel Output
|-
+
|5    || LINEOUTL || LINE-OUT Left Channel Output
+
 
|}
 
|}
  
Line 116: Line 164:
 
|2    || VDD_5V     
 
|2    || VDD_5V     
 
|-  
 
|-  
|3    || UART_TXD0/GPIOA4
+
|3    || UART_TXD0  
 
|-
 
|-
|4    || UART_RXD0/GPIOA5/PWM0
+
|4    || UART_RXD0  
 
|}
 
|}
  
:'''说明'''
+
:'''Note'''
::#SYS_3.3V: 3.3V电源输出
+
::#SYS_3.3V: 3.3V power output
::#VDD_5V: 5V电源输入/输出。当电压大于MicroUSB时,向板子供电,否则板子从MicroUSB取电。输入范围:4.7~5.6V
+
::#VDD_5V: 5V power input/output. The input range is 4.7V ~ 5.5V. It can take power input from the MicroUSB.
::#全部信号引脚均为3.3V电平,输出电流为5mA,可以带动小负荷模块,io都不能带负载
+
::#All pins are 3.3V and output current is 5mA
::#更详细的信息请查看原理图:[http://wiki.friendlyarm.com/wiki/images/a/a1/Schematic_NanoPi_NEO2-v1.0_1701.pdf NanoPi_NEO2-1701-Schematic.pdf]
+
::#For more details refer to the document: [http://wiki.friendlyarm.com/wiki/images/d/db/Schematic_NanoPi_NEO2-V1.1-1711.pdf NanoPi_NEO2_V1.1_1711-Schematic.pdf]
  
===机械尺寸===
+
===Dimensional Diagram===
 
[[File:NanoPi-NEO2-1701-dimensions.png|frameless|400px|]]
 
[[File:NanoPi-NEO2-1701-dimensions.png|frameless|400px|]]
  
::详细尺寸:[http://wiki.friendlyarm.com/wiki/index.php/File:NanoPi_NEO_2_Dimesions(dxf).rar pcb的dxf文件]
+
::For more details refer to [http://wiki.friendlyarm.com/wiki/index.php/File:NanoPi_NEO2_V1.1-1711_PCB-Dimensional.rar pcb file in dxf format]
  
==快速入门==
+
==Software Features==
===准备工作===
+
{{H5SoftwareFeature-FriendlyCore|NanoPi-NEO2}}
要开启你的NanoPi NEO2新玩具,请先准备好以下硬件
+
 
* NanoPi NEO2主板
+
==Get Started==
* microSD卡/TF卡: Class10或以上的 8GB SDHC卡
+
===Essentials You Need===
* 一个microUSB接口的外接电源,要求输出为5V/2A(可使用同规格的手机充电器)
+
Before starting to use your NanoPi NEO2 get the following items ready
* 一台电脑,需要联网,建议使用Ubuntu 14.04 64位系统
+
* NanoPi NEO2
===经测试使用的TF卡===
+
* microSD Card/TFCard: Class 10 or Above, minimum 8GB SDHC
制作启动NanoPi NEO2的TF卡时,建议Class10或以上的 8GB SDHC卡。以下是经友善之臂测试验证过的高速TF卡:
+
* microUSB power. A 5V/2A power is a must
*SanDisk闪迪 TF 8G Class10 Micro/SD 高速 TF卡:
+
* A Host computer running Ubuntu 16.04 64 bit system
 +
 
 +
===TF Cards We Tested===
 +
To make your NanoPi NEO2 boot and run fast we highly recommend you use a Class10 8GB SDHC TF card or a better one. The following cards are what we used in all our test cases presented here:
 +
*SanDisk TF 8G Class10 Micro/SD TF card:
 
[[File:SanDisk MicroSD.png|frameless|100px|SanDisk MicroSD 8G]]
 
[[File:SanDisk MicroSD.png|frameless|100px|SanDisk MicroSD 8G]]
*SanDisk闪迪 TF128G 至尊高速MicroSDXC TF 128G Class10 48MB/S:
+
*SanDisk TF128G MicroSDXC TF 128G Class10 48MB/S:
 
[[File:SanDisk MicroSD-01.png|frameless|100px|SanDisk MicroSD 128G]]
 
[[File:SanDisk MicroSD-01.png|frameless|100px|SanDisk MicroSD 128G]]
*川宇 8G手机内存卡 8GTF卡存储卡 C10高速class10 micro SD卡:
+
*川宇 8G C10 High Speed class10 micro SD card:
 
[[File:SanDisk MicroSD-02.png|frameless|100px|chuanyu MicroSD 8G]]
 
[[File:SanDisk MicroSD-02.png|frameless|100px|chuanyu MicroSD 8G]]
  
===制作一张带运行系统的TF卡===
+
===Install OS===
====下载系统固件====
+
====Get Image File====
首先访问[https://pan.baidu.com/s/1eRDbeG6 下载地址]下载需要的固件文件(officail-ROMs目录)和烧写工具(tools目录)<br />
+
Get the following files from [http://download.friendlyarm.com/nanopineo2 download link] to download image files (under the officail-ROMs directory) and the flashing utility(under the tools directory):<br />
 
+
 
::{| class="wikitable"
 
::{| class="wikitable"
 
|-
 
|-
|colspan=2|使用以下固件:
+
|colspan=2|Image Files:
 
|-
 
|-
|nanopi-neo2-ubuntu-core-qte-sd4g.img.zip     || Ubuntu-Core with Qt-Embedded系统固件                 
+
|nanopi-neo2_sd_friendlycore-xenial_3.10_arm64_YYYYMMDD.img.zip || FriendlyCore (base on UbuntuCore) Image File, kernel:Linux-3.10                 
 
|-
 
|-
|colspan=2|烧写工具: 
+
|nanopi-neo2_sd_friendlycore-xenial_4.14_arm64_YYYYMMDD.img.zip || FriendlyCore (base on UbuntuCore) Image File, kernel:Linux-4.14                 
 
|-
 
|-
|win32diskimager.rar || Windows平台下的系统烧写工具,Linux平台下可以用dd命令烧写系统
+
|nanopi-neo2_sd_openwrt_4.14_arm64_YYYYMMDD.img.zip  || OpenWrt, kernel:Linux-4.14
|-
+
|}
+
 
+
====制作Ubuntu-Core with Qt-Embedded系统TF卡====
+
将固件nanopi-neo2-ubuntu-core-qte-sd4g.img.zip和烧写工具win32diskimager.rar分别解压,在Windows下插入TF卡(限4G及以上的卡),以管理员身份运行 win32diskimager 工具,
+
在win32diskimager工具的界面上,选择你的TF卡盘符,选择系统固件,点击 Write 按钮烧写即可。烧写完成后,将制作好TF卡插入NanoPi NEO2,使用USB供电(5V/2A),
+
NanoPi NEO2会上电自动开机,看到板上的蓝色LED闪烁,这说明系统已经开始启动了。<br />
+
 
+
==Ubuntu-Core with Qt-Embedded系统的使用==
+
===运行Ubuntu-Core with Qt-Embedded系统===
+
* 如果您需要进行内核开发,你最好选购一个串口配件,连接了串口,则可以通过串口终端对NanoPi NEO2进行操作。以下是串口配件的接法,接上串口,即可调试。接上串口后你可以选择从串口模块的DC口或者从NEO2的MicroUSB口进行供电:
+
[[File:PSU-ONECOM-NEO2.jpg|frameless|400px|PSU-ONECOM-NEO2]]<br>
+
也可以使用USB转串口模块调试,请注意需要使用5V/2A电源从NanoPi NEO2的MicroUSB口给NEO2供电:<br>
+
[[File:USB2UART-NEO2.jpg|frameless|400px|USB2UART-NEO2]]
+
* Ubuntu-Core默认帐户:
+
普通用户:
+
    用户名: pi
+
    密码: pi
+
 
+
Root用户:
+
    用户名: root
+
    密码: fa
+
 
+
默认会以 pi 用户自动登录,你可以使用 sudo npi-config 命令取消自动登录。
+
 
+
* 更新软件包:
+
<syntaxhighlight lang="bash">
+
sudo apt-get update
+
</syntaxhighlight>
+
 
+
===使用npi-config配置系统===
+
npi-config是一个命令行下的系统配置工具,可以对系统进行一些初始化的配置,可配置的项目包括:用户密码、系统语言、时区、Hostname、SSH开关、自动登录选项等,在命令行执行以下命令即可进入:
+
<syntaxhighlight lang="bash">
+
sudo npi-config
+
</syntaxhighlight>
+
npi-config的显示界面如下所示:<br />
+
[[File:npi-config.jpg|frameless|500px|npi-config]]<br />
+
 
+
 
+
===连接有线网络===
+
NanoPi NEO2在加电开机前如果已正确的连接网线,则系统启动时会自动获取IP地址,如果没有连接网线、没有DHCP服务或是其它网络问题,则会导致获取IP地址失败,同时系统启动会因此等待约15~60秒的时间。
+
手动获取IP地址
+
<syntaxhighlight lang="bash">
+
dhclient eth0
+
</syntaxhighlight>
+
 
+
===SSH登录===
+
NEO2没有任何图形界面输出的接口,如果你没有串口模块,可以通过SSH协议登录NEO2。假设通过路由器查看到NEO2的IP地址为192.168.1.230,你可以在PC机上执行如下命令登录NEO2:
+
<syntaxhighlight lang="bash">
+
ssh root@192.168.1.230
+
</syntaxhighlight>
+
密码为fa。
+
 
+
===扩展TF卡文件系统===
+
第一次启动系统时,系统会自动扩展文件系统分区,请耐心等待,TF卡的容量越大,需要等待的时间越长,进入系统后执行下列命令查看文件系统分区大小:
+
<syntaxhighlight lang="bash">
+
df -h
+
</syntaxhighlight>
+
 
+
===连接USB WiFi===
+
系统默认已经支持市面上众多常见的USB WiFi,想知道你的USB WiFi是否可用只需将其接在NEO2上即可,已测试过的USB WiFi型号如下:
+
::{| class="wikitable"
+
 
|-
 
|-
|序号||型号     
+
|colspan=2|Flash Utility: 
 
|-
 
|-
||| RTL8188CUS 802.11n WLAN Adapter   
+
|win32diskimager.rar || Windows utility. Under Linux users can use "dd"
|-
+
|2  ||  RT2070 Wireless Adapter   
+
 
|-  
 
|-  
|3  ||  RT2870/RT3070 Wireless Adapter
 
|-
 
|4  ||  RTL8192CU Wireless Adapter
 
|-
 
|5  ||  NetGear, Inc. WG111v3 54 Mbps Wireless [realtek RTL8187B]
 
 
|}
 
|}
NanoPi NEO2 上电启动并插入上USB WiFi后,通过串口登录到系统,敲入以下命令可以查看到系统是否识别到USB WiFi,如果出现“wlan0”,则证明USB WiFi已被识别到:
 
<syntaxhighlight lang="bash">
 
sudo ifconfig -a
 
</syntaxhighlight>
 
  
用vi打开文件 /etc/wpa_supplicant/wpa_supplicant.conf: <br />
+
{{BurnOS-Allwinner|NanoPi-NEO2}}
<syntaxhighlight lang="bash">
+
sudo vi /etc/wpa_supplicant/wpa_supplicant.conf
+
</syntaxhighlight>
+
 
+
在文件末尾填入路由器信息如下所示:
+
<syntaxhighlight lang="bash">
+
network={
+
        ssid="YourWiFiESSID"
+
        psk="YourWiFiPassword"
+
}
+
</syntaxhighlight>
+
其中,YourWiFiESSID和YourWiFiPassword请替换成你要连接的无线AP名称和密码。<br />
+
保存退出后,执行以下命令即可连接WiFi: <br />
+
<syntaxhighlight lang="bash">
+
$ sudo ifdown wlan0
+
$ sudo ifup wlan0
+
</syntaxhighlight>
+
 
+
如果你的WiFi密码中有特殊字符,或者你不希望明文存放密码,你可以使用wpa_passphrase命令为WiFi密码生成一个密钥(psk),用密钥来代替密码 ,在命令行下,可输入以下命令生成密钥: <br />
+
<syntaxhighlight lang="bash">
+
$ sudo wpa_passphrase YourWiFiESSID
+
</syntaxhighlight>
+
在提示输入密码时,输入你的WiFi密码,再打开 /etc/wpa_supplicant/wpa_supplicant.conf 文件你会发现密钥已经被更新,你可以删除明文的密码了。
+
 
+
===连接USB摄像头模块(FA-CAM202)使用===
+
[[File:USB-Camera-NanoPi-NEO2.png|frameless|500px|USB camera]]<br/>
+
FA-CAM202是一款200万像素的USB摄像头模块,参考维基[[Matrix - USB_Camera(FA-CAM202)/zh|Matrix - USB_Camera(FA-CAM202)]]
+
启动系统,连接网络,以root用户登录终端并编译运行mjpg-streamer:
+
<syntaxhighlight lang="bash">
+
cd /root/mjpg-streamer
+
make
+
./start.sh
+
</syntaxhighlight>
+
mjpg-streamer是一个开源的网络视频流服务器,在板子上成功运行mjpg-streamer后会打印下列信息:
+
<syntaxhighlight lang="bash">
+
i: Using V4L2 device.: /dev/video0
+
i: Desired Resolution: 1280 x 720
+
i: Frames Per Second.: 30
+
i: Format............: YUV
+
i: JPEG Quality......: 90
+
o: www-folder-path...: ./www/
+
o: HTTP TCP port.....: 8080
+
o: username:password.: disabled
+
o: commands..........: enabled
+
</syntaxhighlight>
+
  
假设NEO2的IP地址为192.168.1.123,在PC的浏览器中输入 192.168.1.123:8080 就能浏览摄像头采集的画面了,效果如下:<br>
+
{{FriendlyCoreGeneral|NanoPi-NEO2}}
[[File:mjpg-streamer-cam500a.png|frameless|400px|mjpg-streamer-cam500a]] <br>
+
{{FriendlyCoreAllwinnerH5|NanoPi-NEO2}}
  
===播放和录制音频===
+
===Play & Record Audio===
NEO2只提供了音频硬件接口(2.0mm 5pin 排针),引脚的定义如下:
+
The NanoPi NEO2 has an audio interface (2.0mm pitch 5-pin header) whose pin description is as follows:
 
::{| class="wikitable"
 
::{| class="wikitable"
 
|-
 
|-
Line 303: Line 236:
 
|3    || LINEOUTR  || LINE-OUT Right Channel Output  
 
|3    || LINEOUTR  || LINE-OUT Right Channel Output  
 
|-
 
|-
|4    || GND      ||
+
|4    || GND      || Ground
 
|-
 
|-
 
|5    || LINEOUTL  || LINE-OUT Left Channel Output
 
|5    || LINEOUTL  || LINE-OUT Left Channel Output
 
|}
 
|}
用户需自行转接音频设备,参考下图:<br>
+
Here is a hardware setup on how to connect an audio device to a NEO2:<br>
[[File:耳麦标注.jpg|frameless|400px|耳麦标注]]<br>
+
[[File:耳麦标注.jpg|frameless|400px| Earphone]]<br>
只有在已外接音频设备的前提下,才可以进行下列步骤测试播放和录制音频。<br>
+
Before begin to play or record a audio make sure your NEO2 is connected to an audio device.<br>
查看系统里的声卡设备:
+
Check a recognized audio device:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
 
$ aplay -l
 
$ aplay -l
 
**** List of PLAYBACK Hardware Devices ****
 
**** List of PLAYBACK Hardware Devices ****
card 0: audiocodec [audiocodec], device 0: SUNXI-CODEC sun50iw2codec-0 []
+
card 0: Codec [H3 Audio Codec], device 0: CDC PCM Codec-0 []
 
   Subdevices: 1/1
 
   Subdevices: 1/1
 
   Subdevice #0: subdevice #0
 
   Subdevice #0: subdevice #0
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
Both Allwinner's H5 and H3 have an internal codec which is named as [H3 Audio Codec] in mainline kernels.<br>
  
播放音频:
+
Play an audio file:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
 
$ aplay /root/Music/test.wav -D plughw:0
 
$ aplay /root/Music/test.wav -D plughw:0
 
</syntaxhighlight>
 
</syntaxhighlight>
  
录制音频:
+
Record an audio file:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
 
$ arecord -f cd -d 5 test.wav
 
$ arecord -f cd -d 5 test.wav
 
</syntaxhighlight>
 
</syntaxhighlight>
  
<!--
+
{{OpenWrt1|NanoPi-NEO2}}
===通过Rpi-Monitor查看系统状态===
+
 
Ubuntu-Core系统里已经集成了Rpi-Monitor,该服务允许用户在通过浏览器查看开发板系统状态。<br>
+
==Make Your Own FriendlyCore==
假设NEO2的IP地址为192.168.1.230,在PC的浏览器中输入下述地址:
+
===Mainline U-boot & Linux(64 bit)===
<syntaxhighlight lang="bash">
+
Now the NanoPi NEO2 can run a 64-bit Linux kernel with 64-bit Ubuntu Core 16.04. Here is a detailed reference on how to run mainline U-boot and Linux on H5: [[Mainline U-boot & Linux/zh|Mainline U-boot & Linux]] <br>
192.168.1.230:8888
+
</syntaxhighlight>
+
可以进入如下页面:<br>
+
[[File:rpi-monitor.png|frameless|500px|rpi-monitor]] <br>
+
用户可以非常方便地查看到系统负载、CPU的频率和温度、可用内存、SD卡容量等信息。
+
-->
+
  
==如何编译Ubuntu-Core with Qt-Embedded系统==
+
===Use Allwinner's BSP===
===准备工作===
+
====Preparations====
访问此处[https://pan.baidu.com/s/1eRDbeG6 下载地址]的sources/nanopi-h5-bsp目录,下载所有压缩文件,使用7-Zip工具解压后得到lichee目录,如下:
+
Visit this link [http://download.friendlyarm.com/nanopineo2 download link] and enter the "sources/nanopi-H5-bsp" directory and download all the source code.Use the 7-zip utility to extract it and a lichee directory and an Android directory will be generated.You can check that by running the following command:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
ls ./
+
$ ls ./
lichee
+
$ lichee
 
</syntaxhighlight>
 
</syntaxhighlight>
  
也可以从github上克隆lichee源码:
+
Or you can get it from our github:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
git clone https://github.com/friendlyarm/h5_lichee.git lichee
+
$ git clone https://github.com/friendlyarm/h5_lichee.git lichee --depth 1
 
</syntaxhighlight>
 
</syntaxhighlight>
注:lichee是全志为其CPU的板级支持包所起的项目名称,里面包含了U-boot,Linux等源码和众多的编译脚本。
+
Note: "lichee" is the project name named by Allwinner for its CPU's source code which contains the source code of U-boot, Linux kernel and various scripts.
  
===安装交叉编译器===
+
====Install Cross Compiler====
访问此处[https://pan.baidu.com/s/1eRDbeG6 下载地址]的toolchain目录,下载压缩包gcc-linaro-arm-4.6.3.tar.xz和gcc-linaro-aarch64.tar.xz。<br>
+
Visit this site [http://download.friendlyarm.com/nanopineo2 download link], enter the "toolchain" directory, download the cross compiler "gcc-linaro-arm-4.6.3.tar.xz" and "gcc-linaro-aarch64.tar.xz" and copy them to the "lichee/brandy/toochain/" directory.<br>  
其中gcc-linaro-arm-4.6.3.tar.xz用于编译U-boot,gcc-linaro-aarch64.tar.xz用于编译Linux内核。下载完成后,将它们拷贝到源码lichee/brandy/toochain/目录下即可。
+
"gcc-linaro-arm-4.6.3.tar.xz"is for compiling u-boot and "gcc-linaro-aarch64.tar.xz" is for compiling Linux kernel.
后面编译U-boot或者Linux内核时,编译脚本会自动解压并使用这两个编译器进行编译。
+
  
===编译lichee源码===
+
====Compile lichee Source Code====
编译全志 H5 的BSP源码包必须使用64bit的Linux PC系统,并安装下列软件包,下列操作均基于Ubuntu-14.04 LTS-64bit:
+
Compilation of the H5's BSP source code must be done under a PC running a 64-bit Linux.The following cases were tested on Ubuntu-14.04 LTS-64bit:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
sudo apt-get install gawk git gnupg flex bison gperf build-essential \
+
$ sudo apt-get install gawk git gnupg flex bison gperf build-essential \
 
zip curl libc6-dev libncurses5-dev:i386 x11proto-core-dev \
 
zip curl libc6-dev libncurses5-dev:i386 x11proto-core-dev \
 
libx11-dev:i386 libreadline6-dev:i386 libgl1-mesa-glx:i386 \
 
libx11-dev:i386 libreadline6-dev:i386 libgl1-mesa-glx:i386 \
Line 370: Line 297:
 
</syntaxhighlight>
 
</syntaxhighlight>
  
编译lichee源码包,执行命令:
+
Enter the lichee directory and run the following command to compile the whole package:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
cd lichee/fa_tools
+
$ cd lichee/fa_tools
./build.sh -b nanopi-neo2 -p linux -t all
+
$ ./build.sh -b nanopi-neo2 -p linux -t all
 
</syntaxhighlight>
 
</syntaxhighlight>
该命令会一次性编译好U-boot、Linux内核和模块。<br>
+
After this compilation succeeds a u-boot, Linux kernel and kernel modules will be generated.<br>
lichee目录里内置了交叉编译器,当进行源码编译时,会自动使用该内置的编译器,所以无需手动安装编译器。
+
Note: the lichee directory contains cross-compilers we have setup. When the build.sh script runs it will automatically call these cross-compilers.
  
下列命令可以更新TF卡上的U-boot:
+
The following commands can be used to update the u-boot on an installation TF card:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
cd lichee/fa_tools/
+
$ cd lichee/fa_tools/
./fuse.sh -d /dev/sdx -p linux -t u-boot
+
$ ./fuse.sh -d /dev/sdx -p linux -t u-boot
 
</syntaxhighlight>
 
</syntaxhighlight>
/dev/sdx请替换为实际的TF卡设备文件名。<br>
+
Note: you need to replace "/dev/sdx" with the device name in your system.<br>
内核boot.img和驱动模块均位于linux-3.10/output目录下,将boot.img拷贝到TF卡的boot分区的根目录即可更新内核。
+
The boot.img and kernel modules are under the "linux-3.10/output" directory. You can copy the new boot.img file to your TF card's boot partition.
  
===编译U-boot===
+
====Compile U-boot====
如果你想单独编译U-boot,可以执行命令:
+
Note:you need to compile the whole lichee directory before you can compile U-boot individually.<br>
 +
You can run the following commands to compile u-boot individually:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
cd lichee/fa_tools/
+
$ cd lichee/fa_tools/
./build.sh -b nanopi-neo2 -p linux -t u-boot
+
$ ./build.sh -b nanopi-neo2 -p linux -t u-boot
 
</syntaxhighlight>
 
</syntaxhighlight>
  
===编译Linux内核===
+
====Compile Linux Kernel====
如果你想单独编译Linux内核,可以执行命令:
+
Note:you need to compile the whole lichee directory before you can compile Linux kernel individually.<br>
 +
You can run the following commands to compile Linux kernel individually:
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
cd lichee/fa_tools/
+
$ cd lichee/fa_tools/
./build.sh -b nanopi-neo2 -p linux -t kernel
+
$ ./build.sh -b nanopi-neo2 -p linux -t kernel
 
</syntaxhighlight>
 
</syntaxhighlight>
编译完成后内核boot.img和驱动模块均位于linux-3.10/output目录下,将boot.img拷贝到TF卡的boot分区的根目录即可。
+
The boot.img and kernel modules are under the "linux-3.10/output" directory. You can copy the new boot.img file to your TF card's boot partition.
  
===清理lichee源码===
+
====Clean Source Code====
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
cd lichee/fa_tools/
+
$ cd lichee/fa_tools/
./build.sh -b nanopi-neo2 -p linux -t clean
+
$ ./build.sh -b nanopi-neo2 -p linux -t clean
 
</syntaxhighlight>
 
</syntaxhighlight>
  
==使用主线U-boot和Linux内核(64位)==
+
==Connect External Modules to NEO2==
NanoPi NEO2现已支持使用64位Linux内核,并使用64位Ubuntu Core 16.04,关于H5芯片系列开发板使用主线U-boot和Linux的方法,请参考维基:[[Mainline U-boot & Linux/zh|Mainline U-boot & Linux]] <br>
+
===DIY NAS Server with 1-bay NAS Dock & NEO2===
 +
The 1-bay NAS Dock is an expansion board which can be used to connect an external hard disk to a NanoPi NEO2.It uses JSM568 USB3.0 to SATA IC and communicates with a NanoPi NEO2 via USB interface. It works with a 2.5" SATA hard disk.It uses TI's DC-DC chipset to convert a 12V input to 5V. It has a power switch for users to turn on/off the device.It supports an onboard RTC battery. FriendlyElec migrated mainline Linux-4.14 kernel and Debian-Jessie with OpenMediaVault. Together with FriendlyElec's customized aluminum case you can quickly assemble a storage server. Here is a hardware setup :[[1-bay NAS Dock v1.2 for NanoPi NEO/NEO2]]<br />
 +
[[File:step4.png | frameless|300px| Step 4]]
  
==使用NEO2扩展配件及编程示例==
+
===Connect Python Programmable NanoHat OLED to NEO2===
===使用1-bay NAS Dock DIY自已的NAS服务器===
+
The NanoHat OLED module is a small and cute monochrome OLED module with low power consumption. It has three user buttons. We provide its driver's source code and a user friendly shell interface on which you can check system information and status.A customized aluminum case is made for it. You cannot miss this lovely utility! Here is a hardware setup:[[NanoHat OLED]]<br />
1-bay NAS Dock是一个用于搭建迷你、小巧的桌上型NAS(Network Attached Storage:网络附属存储)设备的扩展底板,它采用了高速稳定的专业级USB 3.0 to SATA转换芯片(JSM568), 可直接安装使用2.5寸小硬盘,并采用TI公司DC-DC芯片实现稳定可靠的12V-5V电源转换,支持板载RTC时钟备份电池;我们还基于最新主线内核Linux-4.11和Debian-Jessie 为其移植了开源NAS软件系统OpenMediaVault,另外配上我们专门为其定制的精致喷砂金属铝外壳,就能够快速的搭建属于你的专用数据存储服务器,详见:[[1-bay_NAS_Dock]]<br />
+
[[File:step4.png | frameless|300px|步骤(4)]]
+
 
+
===使用Python编程操作NanoHat OLED扩展板===
+
NanoHat OLED是一款精致小巧的单色OLED显示屏,带3个按键,我们不仅提供了源代码级驱动,而且为您展现了一个简单实用的Shell界面, 通过它你可以查看系统时间,系统运行状态,以及关机等操作;你还可以下载所有源代码自行修改编译,设计自己喜欢的界面; 配上我们专门为其定制的全金属铝外壳,相信你一定会爱不释手!详见:[[NanoHat OLED]]<br />
+
 
[[File:NanoHat OLED_nanopi_NEO.jpg|frameless|300px|NanoHat OLED_nanopi_NEO]]
 
[[File:NanoHat OLED_nanopi_NEO.jpg|frameless|300px|NanoHat OLED_nanopi_NEO]]
  
===使用Python编程控制NanoHat Motor 电机驱动模块===
+
===Connect Python Programmable NanoHat Motor to NEO2===
该模块可驱动四个5V PWM舵机模块和四个12V直流电机或者两个12V四线步进电机,详见:[[NanoHat Motor]]<br />
+
The NanoHat Motor module can drive four 5V PWM steering motors and four 12V DC motors or four 5V PWM steering motors and two 12V four-wire step motors.Here is a hardware setup: [[NanoHat Motor]]<br />
 
[[File:NanoHat Motor_nanopi_NEO.jpg|frameless|300px|NanoHat Motor_nanopi_NEO]]
 
[[File:NanoHat Motor_nanopi_NEO.jpg|frameless|300px|NanoHat Motor_nanopi_NEO]]
  
===使用NanoHat PCM5102A 数字音频解码模块===
+
===Connect NanoHat PCM5102A to NEO2===
NanoHat PCM5102A采用了TI公司专业的立体声DAC音频芯片PCM5102A,为您提供数字音频信号完美还原的音乐盛宴, 详见:[[NanoHat PCM5102A]]<br />
+
The NanoHat PCM5102A module uses TI's DAC audio chip PCM5102A, a convenient and easy-to-use audio module for hobbyists. Here is a hardware setup:[[NanoHat PCM5102A]]<br />
 
[[File:Matrix - NanoHat PCM5102A_nanopi_NEO.jpg|frameless|300px|Matrix - NanoHat PCM5102A_nanopi_NEO]]
 
[[File:Matrix - NanoHat PCM5102A_nanopi_NEO.jpg|frameless|300px|Matrix - NanoHat PCM5102A_nanopi_NEO]]
  
===完全兼容的Arduino的UNO Dock扩展板===
+
===Connect Arduino Compatible UNO Dock to NEO2===
UNO Dock本身就是一个Arduino UNO,你可以使用Arduino IDE开发下载运行所有Arduino工程项目;它还是NanoPi NEO2的扩展坞,不仅为其提供稳定可靠的电源输入,还可以使用Python编程控制Arduino配件,借助强大的Ubuntu生态系统,快速把你的Arduino项目送上云端,详见:[[UNO Dock for NanoPi NEO v1.0]]<br />
+
The UNO Dock module is an Arduino board compatible with Arduino UNO and works with Arduino programs.You can use Arduino IDE to run all Arduino programs on the Dock.It also exposes the NanoPi NEO2's pins.It converts 12V power input to 5V/2A output.You can search for various code samples from Ubuntu's ecosystem and run on the Dock. These features make it a powerful platform for IOT projects and cloud related applications. Here is a hardware setup:[[UNO Dock for NanoPi NEO v1.0]]<br />
 
[[File:Matrix-UNO_Dock_NEO.jpg|frameless|300px|Matrix-UNO_Dock_NEO]]
 
[[File:Matrix-UNO_Dock_NEO.jpg|frameless|300px|Matrix-UNO_Dock_NEO]]
  
===Power Dock 高效的电源转换模块===
+
===Connect Power Dock to NEO2===
Power Dock for NanoPi NEO是一个高效的电源转换模块,能为用电设备提供稳定可靠的供电,  详见:[[Power Dock for NanoPi NEO]]<br />
+
The Power Dock for NanoPi NEO2 is a high efficiency power conversion module. It provides stable and reliable power source. Here is a hardware setup:[[Power Dock for NanoPi NEO]]<br />
 
[[File:Power Dock for NanoPi NEO_nanopi_NEO.jpg|frameless|300px|Power Dock for NanoPi NEO_nanopi_NEO]]
 
[[File:Power Dock for NanoPi NEO_nanopi_NEO.jpg|frameless|300px|Power Dock for NanoPi NEO_nanopi_NEO]]
  
===NanoHat Proto 可堆叠的面包板模块===
+
===Connect NanoHat Proto to NEO2===
NanoHat Proto是一个功能高度自由的模块, 板载EEPROM,详见:[[NanoHat Proto]]<br />
+
The NanoHat Proto is an expansion board which exposes NEO2's various pins.It has an onboard EEPROM for data storage.Here is a hardware setup:[[NanoHat Proto]]<br />
 
[[File:Matrix - NanoHat Proto_nanopi_NEO.jpg|frameless|300px|Matrix - NanoHat Proto_nanopi_NEO]]
 
[[File:Matrix - NanoHat Proto_nanopi_NEO.jpg|frameless|300px|Matrix - NanoHat Proto_nanopi_NEO]]
  
==3D 打印外壳==
+
===Connect Matrix - 2'8 SPI Key TFT to NanoPi NEO2===
[[File:NanoPi NEO2-3D.jpg|thumb|frameless|300px]]
+
The Matrix-2'8_SPI_Key_TFT module is a 2.8" TFT LCD with resistive touch. It uses the ST7789S IC and XPT2046 resistive touch IC. It has SPI interface and three configurable user keys.Here is its wiki page [[Matrix - 2'8 SPI Key TFT]]<br />
[http://www.thingiverse.com/thing:2180624 下载文件]
+
[[File:Matrix-2'8_SPI_Key_TFT-1706.jpg|frameless|300px|File:Matrix-2'8_SPI_Key_TFT-1706]]
  
==资源链接==
+
==3D Printing Files==
===手册原理图等开发资料===
+
[[File:NanoPi NEO2-3D.jpg|thumb|NanoPi_NEO2_V1.0-1701 3D Printed Housing|300px]]
* 原理图
+
*[http://www.thingiverse.com/thing:2180624 NanoPi_NEO2_V1.0-1701 3D Printing Files]
 +
*[xxx NanoPi_NEO2_V1.1-1711 3D Printing Files]
 +
 
 +
==Resources==
 +
===Datasheet & Schematics===
 +
* Schematics
 
** [http://wiki.friendlyarm.com/wiki/images/a/a1/Schematic_NanoPi_NEO2-v1.0_1701.pdf NanoPi-NEO2-1701-Schematic.pdf]
 
** [http://wiki.friendlyarm.com/wiki/images/a/a1/Schematic_NanoPi_NEO2-v1.0_1701.pdf NanoPi-NEO2-1701-Schematic.pdf]
* 尺寸图
+
** [http://wiki.friendlyarm.com/wiki/images/d/db/Schematic_NanoPi_NEO2-V1.1-1711.pdf NanoPi-NEO2-V1.1-1711-Schematic.pdf]
** [http://wiki.friendlyarm.com/wiki/index.php/File:NanoPi_NEO_2_Dimesions(dxf).rar NanoPi-NEO2-1701 pcb的dxf文件]
+
* Dimensional Diagram
* H5芯片手册 [http://wiki.friendlyarm.com/wiki/images/d/de/Allwinner_H5_Datasheet_V1.0.pdf Allwinner_H5_Datasheet_V1.0.pdf]
+
** [http://wiki.friendlyarm.com/wiki/index.php/File:NanoPi_NEO_2_Dimesions(dxf).rar NanoPi-NEO2-1701 pcb in dxf format]
 +
** [http://wiki.friendlyarm.com/wiki/index.php/File:NanoPi_NEO2_V1.1-1711_PCB-Dimensional.rar NanoPi_NEO2_V1.1-1711 pcb file in dxf format]
 +
** [http://wiki.friendlyarm.com/wiki/images/3/35/NEO_Heat_sink_dimension.pdf NanoPi-NEO2 Heat sink file in pdf format]
 +
* H5 Datesheet
 +
** [http://wiki.friendlyarm.com/wiki/images/d/de/Allwinner_H5_Datasheet_V1.0.pdf Allwinner_H5_Datasheet_V1.0.pdf]
 +
 
 +
===Internet resources===
 +
* unofficial ROM
 +
** [http://www.dietpi.com/ DietPi]
 +
** [https://www.armbian.com/download/?tx_maker=friendlyelec armbian]
 +
 
 +
* article
 +
** [https://linux-sunxi.org/FriendlyARM_NanoPi_NEO2]
 +
** [https://www.cnx-software.com/2017/03/14/nanopi-neo2-development-bord-powered-by-allwinner-h5-64-bit-arm-processor-sells-for-15/]
 +
** [https://www.cnx-software.com/2017/03/26/nanopi-neo-2-board-nanohats-and-bakebit-starter-kit-review-part-1-hardware-overview-assembly/]
 +
** [https://www.cnx-software.com/2017/04/02/nanopi-neo-2-board-benchmarks-with-ubuntu-16-04-2-using-linux-3-10-and-linux-4-10/]
 +
** [https://tech.scargill.net/nanopi-neo-2/]
 +
** [https://tech.scargill.net/diy-nas/]
 +
{{H5ChangeLog}}
 +
 
 +
==Hardware Change List==
 +
* '''NanoPi NEO2 Version Compare & List(Hardware)'''
 +
::{| class="wikitable"
 +
|-
 +
|version || NanoPi NEO2 V1.0 || NanoPi NEO2 V1.1
 +
|-
 +
|Photo    || [[File:NanoPi-NEO2-V1.0-1701-update.jpg |thumb|]] || [[File:NanoPi-NEO2-V1.1-1711.jpg |thumb|]]
 +
|-
 +
|TF Card Slot  || ① Non-Popup TF Card Slot<br> || ①Popup TF Card Slot 
 +
|-
 +
|Audio Connector  ||②NanoPi NEO V1.0 1701's Audio connector is a 2.0mm 5Pin-header<br/> [[File:NanoPi-NEO-V1.1A.jpg |thumb|]]  ||②NanoPi NEO V1.1 1711's Audio connector is a 2.54mm 4Pin-header<br/>[[File:NanoPi-NEO2-V1.1.jpg |thumb|]]
 +
|-
 +
|RJ45 Gbps Ethernet ||③ NanoPi NEO V1.0 1701's Ethernet port is an SMT connector ||③ NanoPi NEO V1.1 1711's Ethernet port is a pin connector.
 +
|-
 +
|CVBS Output ||  ||④ NanoPi NEO V1.1 1711 has a CVBS output which V1.0 doesn't have
 +
|-
 +
|Mounting Hole || ||⑤ NanoPi NEO V1.1 1711 has two more mounting holes of 1.7 mm in diameter
 +
|-
 +
|GPIO voltage regulation || ||⑥ NanoPi NEO V1.1 1711 has 1.1V/1.3V GPIO voltage regulation
 +
|}
 +
 
 +
{{H5ChangeLog}}
 +
 
 +
==Update Log==
 +
===March-14-2017===
 +
* Released English Version
 +
 
 +
===April-5-2017===
 +
* Added sections 5.2 and 5.8
 +
 
 +
===May-7-2017===
 +
* Added sections 7: mainline support for H5
 +
* Added sections 8: support for external modules
 +
 
 +
===May-17-2017===
 +
* Added sections 5.9: WiringNP support for H5
 +
 
 +
===May-24-2017===
 +
* Added section 3: Software Features
 +
 
 +
===June-4-2017===
 +
* Updated section 5.3.1
 +
* Updated section 3: added more OS features
 +
 
 +
===June-8-2017===
 +
* Updated section 3.2: added support for RPi.GPIO_NP
 +
* Added section 6.10:  added support for RPi.GPIO_NP
  
==更新日志==
+
===July-5-2017===
===2017-04-28===
+
* Updated sections 5.3.2, 6.5 and 6.8
* 添加使用主线U-boot和Linux的章节;
+
* Added section 8.8:  connect 2.8"TFT to NEO2
  
===2017-04-18===
+
===July-9-2017===
Ubuntu-Core系统更新如下:
+
* Updated section 7.2
* 修改了登录欢迎界面,当用户登录时会打印系统的基本状态信息;
+
* 增加 npi-config 工具,npi-config是一个命令行下的系统配置工具,可以对系统进行一些初始化的配置,可配置的项目包括:用户密码、系统语言、时区、Hostname、SSH开关、自动登录选项等,在命令行执行以下 sudo npi-config 即可进入;
+
* 预装NetworkManager作为网络管理工具;
+
* 新增pi用户,并配置为自动登录,自动登录特性可以使用npi-config工具配置;
+
  
===2017-03-30===
+
===March-20-2018===
* Ubuntu-Core系统从15.10版本升级到16.04版本;
+
* Updated sections 4, 9 and 10
* Ubuntu-Core系统支持录制和播放音频;
+
* Added section 11
* Ubuntu-Core系统修改了登录界面,当用户登录时会打印系统的状态信息,包括系统负载,已用内存,已用存储空间,IP地址,CPU温度等;
+
* Ubuntu-Core系统添加npi-config工具;
+

Revision as of 08:25, 31 July 2019

查看中文

Contents

1 Introduction

Overview
Front
Back
  • The NanoPi NEO2 is a newly released super tiny ARM board by FriendlyElec. It uses Allwinner’s 64-bit H5 quad-core SoC (ARM Cortex-A53). It has internal hexa-core Mail450 GPU, 512M DDR3 RAM. A UbuntuCore and Armbian image files are ready for it.
  • The NanoPi NEO2 inherits NEO's form factor and has compatible interfaces and ports with NEO. In addition in such a small dimension it has Gbps Ethernet and one USB host port. These features make it especially suitable for applications that require high data throughput , speedy data transmission and high performance. Hobbyists and makers will just love it.

2 Hardware Spec

  • CPU: Allwinner H5, Quad-core 64-bit high-performance Cortex A53
  • DDR3 RAM: 512MB
  • Connectivity: 10/100/1000M Ethernet, RTL8211E-VB-CG chip
  • USB Host: USB Type A x 1 and USB pin header x 2
  • MicroSD Slot: MicroSD x 1 for system boot and storage
  • LED: Power LED x 1, System LED x 1
  • GPIO1: 2.54mm pitch 24 pin-header, compatible with Raspberry Pi's GPIO pin1 - pin 24. It includes UART, SPI, I2C, IO etc
  • GPIO2: 2.54mm pitch 12 pin-header. It includes USB, IR receiver, I2S, IO etc
  • Serial Debug Port: 2.54mm pitch 4pin-header
  • Audio In/Out: 2.54mm pitch 4 pin-header
  • MicroUSB: Power input(5V/2A) and OTG
  • PCB Dimension: 40 x 40mm
  • Working Temperature: -20℃ to 70℃
  • Weight: 13g(WITHOUT Pin-headers)
  • OS/Software: u-boot,Ubuntu Core


2.1 UbuntuCore 16.04

  • 64-bit system
  • mainline kernel: Linux-4.14
  • rpi-monitor: check system status and information
  • npi-config: system configuration utility for setting passwords, language, timezone, hostname, SSH and auto-login,and enabling/disabling i2c, spi, serial and PWM. When enabling PWM it will prompt that Serial debug port will be disabled.
  • software utility: wiringNP to access GPIO pins
  • software utility: RPi.GPIO_NP to access GPIO pins
  • networkmanager: manage network
  • system log output from serial port
  • supports USB WiFi module: refer to #Connect USB WiFi to NEO
  • supports audio recording and playing with 3.5mm audio jack
  • supports I2C 0/1
  • fixed MAC address

2.2 Ubuntu OLED

  • mainline kernel: Linux-4.14
  • supports FriendlyElec's OLED module

2.3 Debian

  • welcome window with basic system information and status

2.4 Debian for NAS Dock

  • mainline kernel: Linux-4.14
  • supports FriendlyElec's NAS Dock
  • optimized OpenMediaVault configuration options
  • allocated swap section

-->

3 Diagram, Layout and Dimension

3.1 Layout

NanoPi NEO2 Layout
pinout
  • GPIO Pin Description
Pin# Name Linux gpio Pin# Name Linux gpio
1 SYS_3.3V 2 VDD_5V
3 I2C0_SDA/GPIOA12 12 4 VDD_5V
5 I2C0_SCL/GPIOA11 11 6 GND
7 GPIOG11 203 8 UART1_TX/GPIOG6 198
9 GND 10 UART1_RX/GPIOG7 199
11 UART2_TX/GPIOA0 0 12 GPIOA6 6
13 UART2_RTS/GPIOA2 2 14 GND
15 UART2_CTS/GPIOA3 3 16 UART1_RTS/GPIOG8 200
17 SYS_3.3V 18 UART1_CTS/GPIOG9 201
19 SPI0_MOSI/GPIOC0 64 20 GND
21 SPI0_MISO/GPIOC1 65 22 UART2_RX/GPIOA1 1
23 SPI0_CLK/GPIOC2 66 24 SPI0_CS/GPIOC3 67
  • USB/Audio/IR Pin Descripton
NanoPi-NEO2
Pin# Name Description
1 VDD_5V 5V Power Out
2 USB-DP1 USB1 DP Signal
3 USB-DM1 USB1 DM Signal
4 USB-DP2 USB2 DP Signal
5 USB-DM2 USB2 DM Signal
6 GPIOL11/IR-RX GPIOL11 or IR Receive
7 SPDIF-OUT/GPIOA17 GPIOA17 or SPDIF-OUT
8 PCM0_SYNC/I2S0_LRC I2S/PCM Sample Rate Clock/Sync
9 PCM0_CLK/I2S0_BCK I2S/PCM Sample Rate Clock
10 PCM0_DOUT/I2S0_SDOUT I2S/PCM Serial Data Output
11 PCM0_DIN/I2S0_SDIN I2S/PCM Serial Data Input
12 GND 0V
  • Audio
Pin# Name Description
1 MP Microphone Positive Input
2 MN Microphone Negative Input
3 LR LINE-OUT Right Channel Output
4 LL LINE-OUT Left Channel Output
  • Debug Port(UART0)
DBG_UART
Pin# Name
1 GND
2 VDD_5V
3 UART_TXD0
4 UART_RXD0
Note
  1. SYS_3.3V: 3.3V power output
  2. VDD_5V: 5V power input/output. The input range is 4.7V ~ 5.5V. It can take power input from the MicroUSB.
  3. All pins are 3.3V and output current is 5mA
  4. For more details refer to the document: NanoPi_NEO2_V1.1_1711-Schematic.pdf

3.2 Dimensional Diagram

NanoPi-NEO2-1701-dimensions.png

For more details refer to pcb file in dxf format

4 Software Features

FriendlyCore System
Cross-Compiler
  • gcc-linaro-6.3.1-2017.02-x86_64_aarch64-linux-gnu
  • it applies to 64-bit Armv8 Cortex-A, little-endian architechture. FriendlyElec uses it for its H5 based boards.
U-boot-2017.11
  • It can recognize a FriendlyElec's H5 based board and load its dtb file accordingly.
  • It optimizes memory settings.
  • It supports voltage regulation IC sy8106a and applies only to NanoPi K1 Plus/NanoPi NEO Core2.
  • It supports MAC generation from H5's CPU ID.
  • It supports system booting from either SD card or eMMC and can automatically load the kernel from the booting device.
Linux-4.14
  • It supports LED. You can access it via "/sys/class/leds".
  • It supports GPIO. You can access it via "/sys/class/gpio/".
  • It supports UART0/1/2/3. You can access it via "/dev/ttySX".
  • It supports I2C0. You can access it via "/dev/i2c-X".
  • It supports SPI0. You can access it via "/dev/spidevX.X".
  • It supports PWM0. You can access it via "/sys/class/pwm/". The UART0 pin is multiplexed.
  • It supports I2S0. It works together with PCM5102A codec. The I2C1 pin is multiplexed.
  • It supports Watchdog. You can access it via "/dev/watchX".
  • It can read a CPU ID. You can access it via "/sys/bus/nvmem/devices/sunxi-sid0/nvmem".
  • It supports IR Receiver. You need to connect an IR receiver to the board.
  • It supports dynamic CPU voltage regulation.
  • It supports Micro USB OTG.
  • It supports USB Host1/2/3.
  • It supports TF Card.
  • It supports 1000M Ethernet.
  • It supports H5's internal Codec and supports voice playing and recording.
  • It supports USB Camera(CAM202).
  • It supports popular USB WiFi Adapters.
  • It supports popular USB Ethernet Adapters.
  • It supports popular USB Serial Converters.
  • It supports popular USB Sound Cards.
  • It supports FriendlyElec's NanoHat PCM5102A.
File System
  • Based on UbuntuCore-16.04, it has original UbuntuCore features.
  • It has popular utilties:VIM/Nano/SSHserver and etc.
  • It has Qt-Embedded-4.8 and suitable for rapid product prototyping which needs a GUI.
  • It has a network management utility "NetworkManager" which can automatically detect and connect to a network. For more details refer to: NetworkManager
  • It has a commandline utility "npi-config" which can be used to set a user password, language, timezone, Hostname, SSH enable/disable, auto-login, hardware interface and etc. For more details refer to Npi-config
  • It expands the file system on the first system boot.
  • It supports file system auto-repair on system boot.
  • It supports 512MB's swap.
  • It supports WiringNP which functions like Arduino's API and can be used to access NanoPi boards' gpio/i2c/spi and etc. For more details refer to: WiringNP
  • It supports FriendlyElec's BakeBit which is a set of sensor modules including hardware components(such as NanoHat Hub extension board) and software (such as BakeBit). For more details refer to BakeBit .
  • It supports RPi.GPIO which can be used to access NanoPi boards' gpio with Python. For more details refer to RPi.GPIO.

5 Get Started

5.1 Essentials You Need

Before starting to use your NanoPi NEO2 get the following items ready

  • NanoPi NEO2
  • microSD Card/TFCard: Class 10 or Above, minimum 8GB SDHC
  • microUSB power. A 5V/2A power is a must
  • A Host computer running Ubuntu 16.04 64 bit system

5.2 TF Cards We Tested

To make your NanoPi NEO2 boot and run fast we highly recommend you use a Class10 8GB SDHC TF card or a better one. The following cards are what we used in all our test cases presented here:

  • SanDisk TF 8G Class10 Micro/SD TF card:

SanDisk MicroSD 8G

  • SanDisk TF128G MicroSDXC TF 128G Class10 48MB/S:

SanDisk MicroSD 128G

  • 川宇 8G C10 High Speed class10 micro SD card:

chuanyu MicroSD 8G

5.3 Install OS

5.3.1 Get Image File

Get the following files from download link to download image files (under the officail-ROMs directory) and the flashing utility(under the tools directory):

Image Files:
nanopi-neo2_sd_friendlycore-xenial_3.10_arm64_YYYYMMDD.img.zip FriendlyCore (base on UbuntuCore) Image File, kernel:Linux-3.10
nanopi-neo2_sd_friendlycore-xenial_4.14_arm64_YYYYMMDD.img.zip FriendlyCore (base on UbuntuCore) Image File, kernel:Linux-4.14
nanopi-neo2_sd_openwrt_4.14_arm64_YYYYMMDD.img.zip OpenWrt, kernel:Linux-4.14
Flash Utility:
win32diskimager.rar Windows utility. Under Linux users can use "dd"

5.3.2 Linux

5.3.2.1 Flash to TF
  • FriendlyCore / Debian / Ubuntu / OpenWrt / DietPi are all based on a same Linux distribution and their installation methods are the same.
  • Extract the Linux image and win32diskimager.rar files. Insert a TF card(at least 8G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your TF card's drive, the wanted image file and click on "write" to start flashing the TF card.

Take "nanopi-neo2_sd_friendlycore-xenial_4.14_arm64_YYYYMMDD.img" as an example here is the installation window. Other image files are installed on the similar window:
win32disk-h5

After it is installed you will see the following window:
win32disk-finish

  • Insert this card into your board's BOOT slot and power on (with a 5V/2A power source). If the PWR LED is on and the STAT LED is blinking this indicates your board has successfully booted.

6 Work with FriendlyCore

6.1 Introduction

FriendlyCore is a light Linux system without X-windows, based on ubuntu core, It uses the Qt-Embedded's GUI and is popular in industrial and enterprise applications.

Besides the regular Ubuntu core's features our FriendlyCore has the following additional features:

  • it supports our LCDs with both capacitive touch and resistive touch(S700, X710, HD702, S430, HD101 and S70)
  • it supports WiFi
  • it supports Ethernet
  • it supports Bluetooth and has been installed with bluez utilities
  • it supports audio playing
  • it supports Qt 5.10.0 EGLES and OpenGL ES1.1/2.0 (Only for S5P4418/S5P6818)

6.2 System Login

  • If your board is connected to an HDMI monitor you need to use a USB mouse and keyboard.
  • If you want to do kernel development you need to use a serial communication board, ie a PSU-ONECOM board, which will

allow you to operate the board via a serial terminal.Here is a setup where we connect a board to a PC via the PSU-ONECOM and you can power on your board from either the PSU-ONECOM or its MicroUSB: PSU-ONECOM-NEO2.jpg
You can use a USB to Serial conversion board too.
Make sure you use a 5V/2A power to power your board from its MicroUSB port:
USB2UART-NEO2.jpg

  • FriendlyCore User Accounts:

Non-root User:

   User Name: pi
   Password: pi

Root:

   User Name: root
   Password: fa

The system is automatically logged in as "pi". You can do "sudo npi-config" to disable auto login.

  • Update packages
$ sudo apt-get update

6.3 Configure System with npi-config

The npi-config is a commandline utility which can be used to initialize system configurations such as user password, system language, time zone, Hostname, SSH switch , Auto login and etc. Type the following command to run this utility.

$ sudo npi-config

Here is how npi-config's GUI looks like:
npi-config

6.4 Develop Qt Application

Please refer to: How to Build and Install Qt Application for FriendlyELEC Boards

6.5 Setup Program to AutoRun

You can setup a program to autorun on system boot with npi-config:

sudo npi-config

Go to Boot Options -> Autologin -> Qt/Embedded, select Enable and reboot.

6.6 Extend TF Card's Section

When FriendlyCore is loaded the TF card's section will be automatically extended.You can check the section's size by running the following command:

$ df -h

6.7 Transfer files using Bluetooth

Take the example of transferring files to the mobile phone. First, set your mobile phone Bluetooth to detectable status, then execute the following command to start Bluetooth search.:

hcitool scan


Search results look like:

Scanning ...
    2C:8A:72:1D:46:02   HTC6525LVW

This means that a mobile phone named HTC6525LVW is searched. We write down the MAC address in front of the phone name, and then use the sdptool command to view the Bluetooth service supported by the phone:

sdptool browser 2C:8A:72:1D:46:02

Note: Please replace the MAC address in the above command with the actual Bluetooth MAC address of the mobile phone.
This command will detail the protocols supported by Bluetooth for mobile phones. What we need to care about is a file transfer service called OBEX Object Push. Take the HTC6525LVW mobile phone as an example. The results are as follows:

Service Name: OBEX Object Push
Service RecHandle: 0x1000b
Service Class ID List:
  "OBEX Object Push" (0x1105)
Protocol Descriptor List:
  "L2CAP" (0x0100)
  "RFCOMM" (0x0003)
    Channel: 12
  "OBEX" (0x0008)
Profile Descriptor List:
  "OBEX Object Push" (0x1105)
    Version: 0x0100

As can be seen from the above information, the channel used by the OBEX Object Push service of this mobile phone is 12, we need to pass it to the obexftp command, and finally the command to initiate the file transfer request is as follows:

obexftp --nopath --noconn --uuid none --bluetooth -b 2C:8A:72:1D:46:02 -B 12 -put example.jpg

Note: Please replace the MAC address, channel and file name in the above command with the actual one.

After executing the above commands, please pay attention to the screen of the mobile phone. The mobile phone will pop up a prompt for pairing and receiving files. After confirming, the file transfer will start.

Bluetooth FAQ:
1) Bluetooth device not found on the development board, try to open Bluetooth with the following command:

rfkill unblock 0

2) Prompt can not find the relevant command, you can try to install related software with the following command:

apt-get install bluetooth bluez obexftp openobex-apps python-gobject ussp-push

6.8 WiFi

For either an SD WiFi or a USB WiFi you can connect it to your board in the same way. The APXX series WiFi chips are SD WiFi chips. By default FriendlyElec's system supports most popular USB WiFi modules. Here is a list of the USB WiFi modules we tested:

Index Model
1 RTL8188CUS/8188EU 802.11n WLAN Adapter
2 RT2070 Wireless Adapter
3 RT2870/RT3070 Wireless Adapter
4 RTL8192CU Wireless Adapter
5 mi WiFi mt7601

You can use the NetworkManager utility to manage network. You can run "nmcli" in the commandline utility to start it. Here are the commands to start a WiFi connection:

  • Change to root
$ su root
  • Check device list
$ nmcli dev

Note: if the status of a device is "unmanaged" it means that device cannot be accessed by NetworkManager. To make it accessed you need to clear the settings under "/etc/network/interfaces" and reboot your system.

  • Start WiFi
$ nmcli r wifi on
  • Scan Surrounding WiFi Sources
$ nmcli dev wifi
  • Connect to a WiFi Source
$ nmcli dev wifi connect "SSID" password "PASSWORD" ifname wlan0

The "SSID" and "PASSWORD" need to be replaced with your actual SSID and password.If you have multiple WiFi devices you need to specify the one you want to connect to a WiFi source with iface
If a connection succeeds it will be automatically setup on next system reboot.

For more details about NetworkManager refer to this link: Use NetworkManager to configure network settings

If your USB WiFi module doesn't work most likely your system doesn't have its driver. For a Debian system you can get a driver from Debian-WiFi and install it on your system. For a Ubuntu system you can install a driver by running the following commands:

$ apt-get install linux-firmware

In general all WiFi drivers are located at the "/lib/firmware" directory.


6.9 Ethernet Connection

If a board is connected to a network via Ethernet before it is powered on it will automatically obtain an IP with DHCP activated after it is powered up. If you want to set up a static IP refer to: Use NetworkManager to configure network settings

6.10 WiringPi and Python Wrapper

6.11 Set Audio Device

If your system has multiple audio devices such as HDMI-Audio, 3.5mm audio jack and I2S-Codec you can set system's default audio device by running the following commands.

  • After your board is booted run the following commands to install alsa packages:
$ apt-get update
$ apt-get install libasound2
$ apt-get install alsa-base
$ apt-get install alsa-utils
  • After installation is done you can list all the audio devices by running the following command. Here is a similar list you may see after you run the command:
$ aplay -l
card 0: HDMI
card 1: 3.5mm codec
card 2: I2S codec

"card 0" is HDMI-Audio, "card 1" is 3.5mm audio jack and "card 2" is I2S-Codec. You can set default audio device to HDMI-Audio by changing the "/etc/asound.conf" file as follows:

pcm.!default {
    type hw
    card 0
    device 0
}
 
ctl.!default {
    type hw
    card 0
}

If you change "card 0" to "card 1" the 3.5mm audio jack will be set to the default device.
Copy a .wav file to your board and test it by running the following command:

$ aplay /root/Music/test.wav

You will hear sounds from system's default audio device.
If you are using H3/H5/H2+ series board with mainline kernel, the easier way is using npi-config


6.12 Connect to USB Camera(FA-CAM202)

The FA-CAM202 is a 200M USB camera. You can refer to <Connect DVP Camera (CAM500B) to Board> on how to connect a USB camera to a board.
You need to change the start.sh script and make sure it uses a correct /dev/videoX node. You can check your FA-CAM202's node by running the following commands:

$ apt-get install v4l-utils
$ v4l2-ctl -d /dev/video1 -D
Driver Info (not using libv4l2):
        Driver name   : uvcvideo
        Card type     : HC 3358+2100: HC 3358+2100
        Bus info      : usb-1c1b000.usb-1
	...

Information above indicates that /dev/video1 is the device node of the FA-CAM 202.

6.13 Check CPU's Working Temperature

You can get CPU's working temperature by running the following command:

$ cpu_freq
CPU0 online=1 temp=26581 governor=ondemand cur_freq=480000
CPU1 online=1 temp=26581 governor=ondemand cur_freq=480000
CPU2 online=1 temp=26581 governor=ondemand cur_freq=480000
CPU3 online=1 temp=26581 governor=ondemand cur_freq=480000

This message means there are currently four CPUs working. All of their working temperature is 26.5 degree in Celsius and each one's clock is 480MHz.

6.14 Test Watchdog

You can test watchdog by running the following commands:

$ cd /root/demo/watchdog/
$ gcc watchdog_demo.c -o watchdog_demo
$ ./watchdog_demo /dev/watchdog0 10
Set timeout: 10 seconds
Get timeout: 10 seconds
System will reboot in 10 second

System will reboot in 10 seconds.

6.15 Test Infrared Receiver

Note: Please Check your board if IR receiver exist.
By default the infrared function is disabled you can enable it by using the npi-config utility:

$ npi-config
    6 Advanced Options     Configure advanced settings
        A8 IR              Enable/Disable IR
            ir Enable/Disable ir[enabled]

Reboot your system and test its infrared function by running the following commands:

$ apt-get install ir-keytable
$ echo "+rc-5 +nec +rc-6 +jvc +sony +rc-5-sz +sanyo +sharp +mce_kbd +xmp" > /sys/class/rc/rc0/protocols   # Enable infrared
$ ir-keytable -t
Testing events. Please, press CTRL-C to abort.

"ir-keytable -t" is used to check whether the receiver receives infrared signals. You can use a remote control to send infrared signals to the receiver. If it works you will see similar messages as follows:

1522404275.767215: event type EV_MSC(0x04): scancode = 0xe0e43
1522404275.767215: event type EV_SYN(0x00).
1522404278.911267: event type EV_MSC(0x04): scancode = 0xe0e42
1522404278.911267: event type EV_SYN(0x00).

6.16 Read CHIP ID

As for Allwinner H2+/H3/H5/ SoCs each of these CPUs has an internal 16-btye CHIP ID which can be read by running the following commands in the Linux-4.14 kernel:

$ apt-get install bsdmainutils
$ hexdump /sys/bus/nvmem/devices/sunxi-sid0/nvmem 
0000000 8082 0447 0064 04c3 3650 ce0a 1e28 2202
0000010 0002 0000 0000 0000 0000 0000 0000 0000
0000020 0000 0000 0000 0000 0000 0000 0000 0000
0000030 0000 0008 0508 0000 0000 0000 0000 0000
0000040 0000 0000 0000 0000 0000 0000 0000 0000

"8082 0447 0064 04c3 3650 ce0a 1e28 2202" is the 16-byte CHIP ID.

6.17 Access GPIO Pins/Wirings with WiringNP

The wiringPi library was initially developed by Gordon Henderson in C. It contains libraries to access GPIO, I2C, SPI, UART, PWM and etc. The wiringPi library contains various libraries, header files and a commandline utility:gpio. The gpio utility can be used to read and write GPIO pins.
FriendlyElec integrated this utility in FriendlyCore system allowing users to easily access GPIO pins. For more details refer to WiringNP WiringNP

6.18 Run Qt Demo

Run the following command

$ sudo /opt/QtE-Demo/run.sh

Here is what you expect to observe. This is an open source Qt Demo:
K2-QtE

6.19 Play & Record Audio

The NanoPi NEO2 has an audio interface (2.0mm pitch 5-pin header) whose pin description is as follows:

Pin# Name Description
1 MICIN1P Microphone Positive Input
2 MICIN1N Microphone Negative Input
3 LINEOUTR LINE-OUT Right Channel Output
4 GND Ground
5 LINEOUTL LINE-OUT Left Channel Output

Here is a hardware setup on how to connect an audio device to a NEO2:
Earphone
Before begin to play or record a audio make sure your NEO2 is connected to an audio device.
Check a recognized audio device:

$ aplay -l
**** List of PLAYBACK Hardware Devices ****
card 0: Codec [H3 Audio Codec], device 0: CDC PCM Codec-0 []
  Subdevices: 1/1
  Subdevice #0: subdevice #0

Both Allwinner's H5 and H3 have an internal codec which is named as [H3 Audio Codec] in mainline kernels.

Play an audio file:

$ aplay /root/Music/test.wav -D plughw:0

Record an audio file:

$ arecord -f cd -d 5 test.wav

7 Work with OpenWrt

7.1 Introduction

OpenWrt is a highly extensible GNU/Linux distribution for embedded devices.Unlike many other distributions for routers, OpenWrt is built from the ground up to be a full-featured, easily modifiable operating system for embedded devices. In practice, this means that you can have all the features you need with none of the bloat, powered by a modern Linux kernel. For more details you can refer to:OpenWrt Website.

7.2 System Login

  • Login via Serial Port

When you do kernel development you'd better get a serial communication board. After you connect your board to a serial communication board you will be able to do development work from a commandline utility.
Here is a hardware setup:
After you connect your board to a serial communication board (e.g. FriendlyElec's serial communication board) you can power the whole system from either the DC port on the serial communication board or the MicroUSB port(if there is one) on your board:
PSU-ONECOM-NEO2.jpg

or you can use a USB to serial board and power on the whole system at the MicroUSB port with a 5V/2A power:
USB2UART-NEO2.jpg

By default you will login as root without a password. You can use "passwd" to set a password for root.
op_login
On first boot the system will automatically extend the file system on the TF card to the max capacity:
resize_rootfs_userdata
Please wait for this to be done.

  • Login via SSH

In FriendlyElec's OpenWrt system the Ethernet(eth0) is configured as WAN.
Before power on your board make sure your board is connected to a master router's LAN with an Ethernet cable and the eth0 will be assigned an IP address by DHCP.
For example, if your eth0 is assigned an IP address 192.168.1.163 you can login with SSH by running the following command:

$ ssh root@192.168.1.163

You can login without a password.

  • Login via Web

You can login OpenWrt via a LuCI Web page.
After you go through all the steps in <Login via SSH> and get an IP address e.g. 192.168.1.163 for the Ethernet connection, type this IP address in a browser's address bar and you will be able to login OpenWrt-LuCI:
R1-OpenWrt-LuCI
By default you will login as root without a password, just click on "Login" to login.

7.3 Manage Software Packages

OpenWrt has a package management utility: opkg. You can get its details by running the following command:

$ opkg
Package Manipulation:
        update                  Update list of available packages
        upgrade <pkgs>          Upgrade packages
        install <pkgs>          Install package(s)
        configure <pkgs>        Configure unpacked package(s)
        remove <pkgs|regexp>    Remove package(s)
        flag <flag> <pkgs>      Flag package(s)
         <flag>=hold|noprune|user|ok|installed|unpacked (one per invocation)
 
Informational Commands:
        list                    List available packages
        list-installed          List installed packages
        list-upgradable         List installed and upgradable packages
        list-changed-conffiles  List user modified configuration files
        files <pkg>             List files belonging to <pkg>
        search <file|regexp>    List package providing <file>
        find <regexp>           List packages whose name or description matches <regexp>
        info [pkg|regexp]       Display all info for <pkg>
        status [pkg|regexp]     Display all status for <pkg>
        download <pkg>          Download <pkg> to current directory
...

These are just part of the manual. Here are some popular opkg commands.

  • Update Package List

Before you install a package you'd better update the package list:

$ opkg update
  • Check Available Packages
$ opkg list

At the time of writing there are 3241 packages available.

  • Check Installed Packages:
$ opkg list-installed

At the time of writing 124 packages have been installed.

  • Install/Delete Packages:
$ opkg install <pkgs>
$ opkg remove <pkgs>
  • Check Files Contained in Installed Packages:
$ opkg files <pkg>
  • Install Chinese Language Package for LuCI
$ opkg install luci-i18n-base-zh-cn
  • Check Changed Files:
$ opkg list-changed-conffiles

7.4 Check System Status

  • Check CPU Temperature & Frequency via Commandline
$ cpu_freq 
Aavailable frequency(KHz):
        480000 624000 816000 1008000
Current frequency(KHz):
        CPU0 online=1 temp=26548C governor=ondemand freq=624000KHz
        CPU1 online=1 temp=26548C governor=ondemand freq=624000KHz
        CPU2 online=1 temp=26548C governor=ondemand freq=624000KHz
        CPU3 online=1 temp=26548C governor=ondemand freq=624000KHz

These messages mean that there are four CPU cores working online simultaneously. Each core's temperature is 26.5 degrees in Celsius, the scheduling policy is on-demand and the working frequency is 624MHz. You can set the frequency by running the following command:

$ cpu_freq -s 1008000
Aavailable frequency(KHz):
        480000 624000 816000 1008000
Current frequency(KHz):
        CPU0 online=1 temp=36702C governor=userspace freq=1008000KHz
        CPU1 online=1 temp=36702C governor=userspace freq=1008000KHz
        CPU2 online=1 temp=36702C governor=userspace freq=1008000KHz
        CPU3 online=1 temp=36702C governor=userspace freq=1008000KHz

These messages mean four CPU cores are working online. Each core's temperature is 26.5 degrees. Each core's governor is on demand and the frequency is 480 MHz.

  • Check System Status on OpenWrt-LuCI Web Page

After open the OpenWrt-LuCI page, go to "Statistics ---> Graphs" and you will see various system statistics e.g.:
1) System Load:
statistics_system_load
2) RAM:
statistics_memory
3) CPU Temperature:
statistics_thermal
All the statistics listed on the Statistics page are presented by the luci-app-statistics package which uses the Collectd utility to collect data and presents them with the RRDtool utility.
If you want to get more statistics you can install other collectd-mod-* packages. All collectd-mod-* packages use the same configuration file: /etc/config/luci_statistics.

7.5 Check Network->Interfaces Configurations

  • After open the OpenWrt-LuCI page, go to "Network" ---> "Interfaces" and you will see the current network's configurations:

op_interface_eth0

  • All the configurations listed on the Network->Interfaces page are stored in the "/etc/config/network" file.




8 Make Your Own FriendlyCore

8.1 Mainline U-boot & Linux(64 bit)

Now the NanoPi NEO2 can run a 64-bit Linux kernel with 64-bit Ubuntu Core 16.04. Here is a detailed reference on how to run mainline U-boot and Linux on H5: Mainline U-boot & Linux

8.2 Use Allwinner's BSP

8.2.1 Preparations

Visit this link download link and enter the "sources/nanopi-H5-bsp" directory and download all the source code.Use the 7-zip utility to extract it and a lichee directory and an Android directory will be generated.You can check that by running the following command:

$ ls ./
$ lichee

Or you can get it from our github:

$ git clone https://github.com/friendlyarm/h5_lichee.git lichee --depth 1

Note: "lichee" is the project name named by Allwinner for its CPU's source code which contains the source code of U-boot, Linux kernel and various scripts.

8.2.2 Install Cross Compiler

Visit this site download link, enter the "toolchain" directory, download the cross compiler "gcc-linaro-arm-4.6.3.tar.xz" and "gcc-linaro-aarch64.tar.xz" and copy them to the "lichee/brandy/toochain/" directory.
"gcc-linaro-arm-4.6.3.tar.xz"is for compiling u-boot and "gcc-linaro-aarch64.tar.xz" is for compiling Linux kernel.

8.2.3 Compile lichee Source Code

Compilation of the H5's BSP source code must be done under a PC running a 64-bit Linux.The following cases were tested on Ubuntu-14.04 LTS-64bit:

$ sudo apt-get install gawk git gnupg flex bison gperf build-essential \
zip curl libc6-dev libncurses5-dev:i386 x11proto-core-dev \
libx11-dev:i386 libreadline6-dev:i386 libgl1-mesa-glx:i386 \
libgl1-mesa-dev g++-multilib mingw32 tofrodos \
python-markdown libxml2-utils xsltproc zlib1g-dev:i386

Enter the lichee directory and run the following command to compile the whole package:

$ cd lichee/fa_tools
$ ./build.sh -b nanopi-neo2 -p linux -t all

After this compilation succeeds a u-boot, Linux kernel and kernel modules will be generated.
Note: the lichee directory contains cross-compilers we have setup. When the build.sh script runs it will automatically call these cross-compilers.

The following commands can be used to update the u-boot on an installation TF card:

$ cd lichee/fa_tools/
$ ./fuse.sh -d /dev/sdx -p linux -t u-boot

Note: you need to replace "/dev/sdx" with the device name in your system.
The boot.img and kernel modules are under the "linux-3.10/output" directory. You can copy the new boot.img file to your TF card's boot partition.

8.2.4 Compile U-boot

Note:you need to compile the whole lichee directory before you can compile U-boot individually.
You can run the following commands to compile u-boot individually:

$ cd lichee/fa_tools/
$ ./build.sh -b nanopi-neo2 -p linux -t u-boot

8.2.5 Compile Linux Kernel

Note:you need to compile the whole lichee directory before you can compile Linux kernel individually.
You can run the following commands to compile Linux kernel individually:

$ cd lichee/fa_tools/
$ ./build.sh -b nanopi-neo2 -p linux -t kernel

The boot.img and kernel modules are under the "linux-3.10/output" directory. You can copy the new boot.img file to your TF card's boot partition.

8.2.6 Clean Source Code

$ cd lichee/fa_tools/
$ ./build.sh -b nanopi-neo2 -p linux -t clean

9 Connect External Modules to NEO2

9.1 DIY NAS Server with 1-bay NAS Dock & NEO2

The 1-bay NAS Dock is an expansion board which can be used to connect an external hard disk to a NanoPi NEO2.It uses JSM568 USB3.0 to SATA IC and communicates with a NanoPi NEO2 via USB interface. It works with a 2.5" SATA hard disk.It uses TI's DC-DC chipset to convert a 12V input to 5V. It has a power switch for users to turn on/off the device.It supports an onboard RTC battery. FriendlyElec migrated mainline Linux-4.14 kernel and Debian-Jessie with OpenMediaVault. Together with FriendlyElec's customized aluminum case you can quickly assemble a storage server. Here is a hardware setup :1-bay NAS Dock v1.2 for NanoPi NEO/NEO2
Step 4

9.2 Connect Python Programmable NanoHat OLED to NEO2

The NanoHat OLED module is a small and cute monochrome OLED module with low power consumption. It has three user buttons. We provide its driver's source code and a user friendly shell interface on which you can check system information and status.A customized aluminum case is made for it. You cannot miss this lovely utility! Here is a hardware setup:NanoHat OLED
NanoHat OLED_nanopi_NEO

9.3 Connect Python Programmable NanoHat Motor to NEO2

The NanoHat Motor module can drive four 5V PWM steering motors and four 12V DC motors or four 5V PWM steering motors and two 12V four-wire step motors.Here is a hardware setup: NanoHat Motor
NanoHat Motor_nanopi_NEO

9.4 Connect NanoHat PCM5102A to NEO2

The NanoHat PCM5102A module uses TI's DAC audio chip PCM5102A, a convenient and easy-to-use audio module for hobbyists. Here is a hardware setup:NanoHat PCM5102A
Matrix - NanoHat PCM5102A_nanopi_NEO

9.5 Connect Arduino Compatible UNO Dock to NEO2

The UNO Dock module is an Arduino board compatible with Arduino UNO and works with Arduino programs.You can use Arduino IDE to run all Arduino programs on the Dock.It also exposes the NanoPi NEO2's pins.It converts 12V power input to 5V/2A output.You can search for various code samples from Ubuntu's ecosystem and run on the Dock. These features make it a powerful platform for IOT projects and cloud related applications. Here is a hardware setup:UNO Dock for NanoPi NEO v1.0
Matrix-UNO_Dock_NEO

9.6 Connect Power Dock to NEO2

The Power Dock for NanoPi NEO2 is a high efficiency power conversion module. It provides stable and reliable power source. Here is a hardware setup:Power Dock for NanoPi NEO
Power Dock for NanoPi NEO_nanopi_NEO

9.7 Connect NanoHat Proto to NEO2

The NanoHat Proto is an expansion board which exposes NEO2's various pins.It has an onboard EEPROM for data storage.Here is a hardware setup:NanoHat Proto
Matrix - NanoHat Proto_nanopi_NEO

9.8 Connect Matrix - 2'8 SPI Key TFT to NanoPi NEO2

The Matrix-2'8_SPI_Key_TFT module is a 2.8" TFT LCD with resistive touch. It uses the ST7789S IC and XPT2046 resistive touch IC. It has SPI interface and three configurable user keys.Here is its wiki page Matrix - 2'8 SPI Key TFT
File:Matrix-2'8_SPI_Key_TFT-1706

10 3D Printing Files

NanoPi_NEO2_V1.0-1701 3D Printed Housing

11 Resources

11.1 Datasheet & Schematics

11.2 Internet resources


12 Hardware Change List

  • NanoPi NEO2 Version Compare & List(Hardware)
version NanoPi NEO2 V1.0 NanoPi NEO2 V1.1
Photo
NanoPi-NEO2-V1.0-1701-update.jpg
NanoPi-NEO2-V1.1-1711.jpg
TF Card Slot ① Non-Popup TF Card Slot
①Popup TF Card Slot
Audio Connector ②NanoPi NEO V1.0 1701's Audio connector is a 2.0mm 5Pin-header
NanoPi-NEO-V1.1A.jpg
②NanoPi NEO V1.1 1711's Audio connector is a 2.54mm 4Pin-header
NanoPi-NEO2-V1.1.jpg
RJ45 Gbps Ethernet ③ NanoPi NEO V1.0 1701's Ethernet port is an SMT connector ③ NanoPi NEO V1.1 1711's Ethernet port is a pin connector.
CVBS Output ④ NanoPi NEO V1.1 1711 has a CVBS output which V1.0 doesn't have
Mounting Hole ⑤ NanoPi NEO V1.1 1711 has two more mounting holes of 1.7 mm in diameter
GPIO voltage regulation ⑥ NanoPi NEO V1.1 1711 has 1.1V/1.3V GPIO voltage regulation


13 Update Log

13.1 March-14-2017

  • Released English Version

13.2 April-5-2017

  • Added sections 5.2 and 5.8

13.3 May-7-2017

  • Added sections 7: mainline support for H5
  • Added sections 8: support for external modules

13.4 May-17-2017

  • Added sections 5.9: WiringNP support for H5

13.5 May-24-2017

  • Added section 3: Software Features

13.6 June-4-2017

  • Updated section 5.3.1
  • Updated section 3: added more OS features

13.7 June-8-2017

  • Updated section 3.2: added support for RPi.GPIO_NP
  • Added section 6.10: added support for RPi.GPIO_NP

13.8 July-5-2017

  • Updated sections 5.3.2, 6.5 and 6.8
  • Added section 8.8: connect 2.8"TFT to NEO2

13.9 July-9-2017

  • Updated section 7.2

13.10 March-20-2018

  • Updated sections 4, 9 and 10
  • Added section 11