Difference between revisions of "NanoPi Fire3"

From FriendlyARM WiKi
Jump to: navigation, search
(updated by API)
(updated by API)
 
(5 intermediate revisions by 2 users not shown)
Line 11: Line 11:
 
* RAM: 1GBMB DDR3
 
* RAM: 1GBMB DDR3
 
* Connectivity: Gbps Ethernet port
 
* Connectivity: Gbps Ethernet port
* PMU Power Management: Implemented by a Cortex-M0 MCU, support software power-off, sleep and wakeup functions
+
* PMU Power Management: Implemented by a Cortex-M0 MCU, support software power-off, and RTC alarm power-on functions
 
* USB 2.0 Type A x 1
 
* USB 2.0 Type A x 1
 
* Debug Serial Port/UART0 x 1
 
* Debug Serial Port/UART0 x 1
Line 26: Line 26:
 
* Power: DC 5V/2A
 
* Power: DC 5V/2A
 
* Temperature measuring range: -20℃ to 80℃
 
* Temperature measuring range: -20℃ to 80℃
* OS: Android, Debian and FriendlyCore(Linux Kernel 4.4 + Qt5.9 + OpenGL2.0)  
+
* OS: Android, Debian and FriendlyCore(Linux Kernel 4.4 + Qt 5.10.0 + OpenGL2.0)  
 
[[File:NanoPi Fire3-B03.png|frameless|500px|compact]]
 
[[File:NanoPi Fire3-B03.png|frameless|500px|compact]]
  
 
==Software Features==
 
==Software Features==
===FriendlyCore (Based on UbuntuCore16.04 with Qt5.9 and OpenGL ES1.1/2.0)===
+
===FriendlyCore (Based on UbuntuCore16.04 with Qt 5.10.0 and OpenGL ES1.1/2.0)===
 
* Linux Kernel 4.4
 
* Linux Kernel 4.4
 
* npi-config: npi-config: system configuration utility for setting passwords, language, timezone, hostname, SSH and  auto-login
 
* npi-config: npi-config: system configuration utility for setting passwords, language, timezone, hostname, SSH and  auto-login
Line 38: Line 38:
 
* auto-login with user account "pi" with access to npi-config  
 
* auto-login with user account "pi" with access to npi-config  
 
* LibMali & OpenGL2.0 driver supported
 
* LibMali & OpenGL2.0 driver supported
* Qt5.9 TLS  with OpenGL hardware acceleration
+
* Qt 5.10.0 TLS  with OpenGL hardware acceleration
 
* HD video playing with hardware decoding
 
* HD video playing with hardware decoding
 
* GStreamer 1.0 with VPU hardware acceleration
 
* GStreamer 1.0 with VPU hardware acceleration
Line 208: Line 208:
 
{{S5Pxx18MofidyKernelCommandLineOnHostPC|NanoPi-Fire3|sd-fuse_s5p6818}}
 
{{S5Pxx18MofidyKernelCommandLineOnHostPC|NanoPi-Fire3|sd-fuse_s5p6818}}
 
{{FriendlyCoreGeneral|NanoPi-Fire3}}
 
{{FriendlyCoreGeneral|NanoPi-Fire3}}
 +
{{FriendlyCoreRunX11Application|NanoPi-Fire3}}
 
{{FriendlyCoreS5Pxx18|NanoPi-Fire3}}
 
{{FriendlyCoreS5Pxx18|NanoPi-Fire3}}
 +
{{S5Pxx18Android|NanoPi-Fire3}}
 
{{S5P6818BuildFromSource|NanoPi-Fire3}}
 
{{S5P6818BuildFromSource|NanoPi-Fire3}}
 
{{S5Pxx18ExternalModules|NanoPi-Fire3}}
 
{{S5Pxx18ExternalModules|NanoPi-Fire3}}
 
{{S5Pxx18AccessHWUnderAndroid|NanoPi-Fire3}}
 
{{S5Pxx18AccessHWUnderAndroid|NanoPi-Fire3}}
 
{{S5Pxx18ConnectToLCDModules|NanoPi-Fire3}}
 
{{S5Pxx18ConnectToLCDModules|NanoPi-Fire3}}
 +
{{S5Pxx18HWfiles|NanoPi-Fire3}}
 
{{DownloadUrl|NanoPi-Fire3}}
 
{{DownloadUrl|NanoPi-Fire3}}
 
{{TechSupport|NanoPi-Fire3}}
 
{{TechSupport|NanoPi-Fire3}}
 
{{S5P6818ChangeLog}}
 
{{S5P6818ChangeLog}}

Latest revision as of 02:45, 25 December 2018

查看中文

Contents

1 Introduction

Overview
Front
Back
  • The NanoPi Fire3 is a high performance ARM Board developed by FriendlyElec for Hobbyists, Makers and Hackers for IOT projects. It features Samsung's Cortex-A53 Octa Core S5P6818@1.4GHz SoC and 1GB 32bit DDR3 RAM. It has a Gbps Ethernet port. It boots Android and Debian from a TF card. It integrates an HDMI and LCD interface. Its adoption of the Raspberry Pi's GPIO pin header makes it compatible with both Raspberry Pi's external GPIO modules and Arduino's shield boards. Its PCB dimension is 75 x 40 mm.

2 Hardware Spec

  • CPU: S5P6818, 1.4GHz
  • RAM: 1GBMB DDR3
  • Connectivity: Gbps Ethernet port
  • PMU Power Management: Implemented by a Cortex-M0 MCU, support software power-off, and RTC alarm power-on functions
  • USB 2.0 Type A x 1
  • Debug Serial Port/UART0 x 1
  • microSD Slot x 1
  • microUSB x 1: for data transmission and power input
  • LCD Interface: 0.5 mm pitch SMT FPC seat, for full-color LCD (RGB: 8-8-8)
  • HDMI: HDMI 1.4A, microHDMI(Type-D), 1080P60
  • DVP Camera Interface: 0.5mm spacing FPC socket. It includes ITU-R BT 601/656 8-bit, I2C and IO
  • GPIO: 2.54mm spacing 40pin, compatible with Raspberry Pi's GPIO. It includes UART, SPI, I2C, PWM, IO etc
  • Button: Power Button x 1, Reset Button x 1
  • LED: LED for Power Indication x 1, System LED x 1
  • RTC: RTC Battery Seat
  • PCB Dimension: 75 x 40mm
  • Power: DC 5V/2A
  • Temperature measuring range: -20℃ to 80℃
  • OS: Android, Debian and FriendlyCore(Linux Kernel 4.4 + Qt 5.10.0 + OpenGL2.0)

compact

3 Software Features

3.1 FriendlyCore (Based on UbuntuCore16.04 with Qt 5.10.0 and OpenGL ES1.1/2.0)

  • Linux Kernel 4.4
  • npi-config: npi-config: system configuration utility for setting passwords, language, timezone, hostname, SSH and auto-login
  • networkmanager: manage network
  • system log output from serial port
  • welcome window with basic system information and status
  • auto-login with user account "pi" with access to npi-config
  • LibMali & OpenGL2.0 driver supported
  • Qt 5.10.0 TLS with OpenGL hardware acceleration
  • HD video playing with hardware decoding
  • GStreamer 1.0 with VPU hardware acceleration
  • RPI.GPIO Support: work in progress, not ready yet
  • WiringPi Support: work in progress, not ready yet

4 Diagram, Layout and Dimension

4.1 Layout

NanoPi Fire3 Layout
  • GPIO Pin Spec
Pin# Name Pin# Name
1 SYS_3.3V 2 VDD_5V
3 I2C0_SDA 4 VDD_5V
5 I2C0_SCL 6 DGND
7 GPIOD8/PPM 8 UART3_TXD/GPIOD21
9 DGND 10 UART3_RXD/GPIOD17
11 UART4_TX/GPIOB29 12 GPIOD1/PWM0
13 GPIOB30 14 DGND
15 GPIOB31 16 GPIOC14/PWM2
17 SYS_3.3V 18 GPIOB27
19 SPI0_MOSI/GPIOC31 20 DGND
21 SPI0_MISO/GPIOD0 22 UART4_RX/GPIOB28
23 SPI0_CLK/GPIOC29 24 SPI0_CS/GPIOC30
25 DGND 26 GPIOB26
27 I2C1_SDA 28 I2C1_SCL
29 GPIOC8 30 DGND
31 GPIOC7 32 GPIOC28
33 GPIOC13/PWM1 34 DGND
35 SPI2_MISO/GPIOC11 36 SPI2_CS/GPIOC10
37 AliveGPIO3 38 SPI2_MOSI/GPIOC12
39 DGND 40 SPI2_CLK/GPIOC9


  • Debug Port(UART0)
Pin# Name
1 DGND
2 VDD_5V
3 UART_TXD0
4 UART_RXD0
  • DVP Camera Interface Pin Spec
Pin# Name
1, 2 SYS_3.3V
7,9,13,15,24 DGND
3 I2C0_SCL
4 I2C0_SDA
5 GPIOB14
6 GPIOB16
8 GPIOC13/PWM1
10 NC
11 VSYNC
12 HREF
14 PCLK
16-23 Data bit7-0
  • RGB LCD Interface Pin Spec
Pin# Name Description
1, 2 VDD_5V 5V output, LCD power
11,20,29, 37,38,39,40, 45 DGND ground
3-10 Blue LSB to MSB RGB Blue
12-19 Green LSB to MSB RGB Green
21-28 Red LSB to MSB RGB Red
30 GPIOB25 available for users
31 GPIOC15 occupied by FriendlyARM one wire technology to recognize LCD models and control backlight and implement resistive touch, not applicable for users
32 XnRSTOUT Form CPU low when system is reset
33 VDEN signal the external LCD that data is valid on the data bus
34 VSYNC vertical synchronization
35 HSYNC horizontal synchronization
36 LCDCLK LCD clock, Pixel frequency
41 I2C2_SCL I2C2 clock signal, for capacitive touch's data transmission
42 I2C2_SDA I2C2 data signal, for capacitive touch's data transmission
43 GPIOC16 interrupt pin for capacitive touch, used with I2C2
44 NC not connected
  • RTC
3.35uA@3V
  • USB 2.0 Host
with 1A over current protection
Note
  1. SYS_3.3V: 3.3V power output
  2. VDD_5V: 5V power input/output. When the external device’s power is greater than the MicroUSB’s the external device is charging the board otherwise the board powers the external device. The input range is 4.7V ~ 5.5V
  3. For more details please refer to the schematic. NanoPi Fire3 1709 Schematic.pdf

4.2 Board Dimension

NanoPi Fire3 Dimensions

For more details please refer to the dxf drawimg document.NanoPi Fire3 1709 dxf文件

5 Get Started

5.1 Essentials You Need

Before starting to use your NanoPi Fire3 get the following items ready

  • NanoPi Fire3
  • microSD Card/TFCard: Class 10 or Above, minimum 8GB SDHC
  • microUSB power. A 5V/2A power is a must
  • HDMI monitor or LCD
  • USB keyboard, mouse and possible a USB hub(or a TTL to serial board)
  • A host computer running Ubuntu 16.04 64 bit system

5.2 Boot from SD Card

Get the following files from here download link:

  • Get a 8G SDHC card and backup its data if necessary.
Image Files
s5p6818-sd-friendlycore-xenial-4.4-armhf-YYYYMMDD.img.zip FriendlyCore(32bit) with Qt 5.10.0 (base on Ubuntu core) image file
s5p6818-sd-friendlycore-xenial-4.4-arm64-YYYYMMDD.img.zip FriendlyCore(64bit) with Qt 5.10.0 (base on Ubuntu core) image file
s5p6818-sd-lubuntu-desktop-xenial-4.4-armhf-YYYYMMDD.img.zip LUbuntu Desktop image file with X Window
s5p6818-sd-android-lollipop-YYYYMMDD.img.zip Android5.1 image file
s5p6818-eflasher-lubuntu-desktop-xenial-4.4-armhf-YYYYMMDD.img.zip SD card image, which is used to install a lubuntu desktop to eMMC
s5p6818-eflasher-android-lollipop-YYYYMMDD.img.zip SD card image, which is used to install an Android to eMMC
s5p6818-eflasher-friendlycore-xenial-4.4-arm64-YYYYMMDD.img.zip SD card image, which is used to install a FriendlyCore-arm64 to eMMC
s5p6818-eflasher-friendlycore-xenial-4.4-armhf-YYYYMMDD.img.zip SD card image, which is used to install a FriendlyCore-armhf to eMMC
Flash Utility:
win32diskimager.rar Windows utility. Under Linux users can use "dd"
  • Uncompress these files. Insert an SD card(at least 4G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your SD card's drive, the wanted image file and click on "write" to start flashing the SD card.
  • Insert this card into your board's boot slot, press and hold the boot key (only applies to a board with onboard eMMC) and power on (with a 5V/2A power source). If the PWR LED is on and LED1 is blinking this indicates your board has successfully booted.

5.2.1 Make Installation Card under Linux Desktop

  • 1) Insert your SD card into a host computer running Ubuntu and check your SD card's device name
dmesg | tail

Search the messages output by "dmesg" for similar words like "sdc: sdc1 sdc2". If you can find them it means your SD card has been recognized as "/dev/sdc". Or you can check that by commanding "cat /proc/partitions"

  • 2) Downlaod Linux script

git clone https://github.com/friendlyarm/sd-fuse_s5p6818.git
cd sd-fuse_s5p6818

  • 3) Here is how to make a Lubuntu desktop SD card
sudo ./fusing.sh /dev/sdx lubuntu

(Note: you need to replace "/dev/sdx" with the device name in your system)
When you run the script for the first time it will prompt you to download an image you have to hit “Y” within 10 seconds otherwise you will miss the download

  • 4) Run this command to make a complete image file:
sudo ./mkimage.sh lubuntu

More content please refre: Assembling the SD card image yourself

5.3 Extend SD Card Section

  • When Debian/Ubuntu is loaded the SD card's section will be automatically extended.
  • When Android is loaded you need to run the following commands on your host PC to extend your SD card's section:
sudo umount /dev/sdx?
sudo parted /dev/sdx unit % resizepart 4 100 resizepart 7 100 unit MB print
sudo resize2fs -f /dev/sdx7

(Note: you need to replace "/dev/sdx" with the device name in your system)

5.4 LCD/HDMI Resolution

When the system boots our uboot will check whether it is connected to an LCD or to an HDMI monitor. If it recognizes an LCD it will configure its resolution. Our uboot defaults to the HDMI 720P configuration.
If you want to modify the LCD resolution you can modify file "arch/arm/plat-s5p6818/nanopi3/lcds.c" in the kernel and recompile it.
If your NanoPi-Fire3 is connected to an HDMI monitor and it runs Android it will automatically set the resolution to an appropriate HDMI mode by checking the "EDID". If your NanoPi-Fire3 is connected to an HDMI monitor and it runs Debian by default it will set the resolution to the HDMI 720P configuration. If you want to modify the HDMI resolution to 1080P modify your kernel's configuration as explained above.

5.5 Update SD Card's boot parameters From PC Host

Insert your SD card into a host PC running Linux, if you want to change your kernel command line parameters you can do it via the fw_setevn utility.
Check the current Command Line:

git clone https://github.com/friendlyarm/sd-fuse_s5p6818.git
cd sd-fuse_s5p6818/tools
./fw_printenv /dev/sdx | grep bootargs

For example, to disable android SELinux, You can change it this way:

./fw_setenv /dev/sdc bootargs XXX androidboot.selinux=permissive

The "XXX" stands for the original bootargs' value.

6 Work with FriendlyCore

6.1 Introduction

FriendlyCore is a light Linux system without X-windows, based on ubuntu core, It uses the Qt-Embedded's GUI and is popular in industrial and enterprise applications.

Besides the regular Ubuntu core's features our FriendlyCore has the following additional features:

  • it supports our LCDs with both capacitive touch and resistive touch(S700, X710, HD702, S430, HD101 and S70)
  • it supports WiFi
  • it supports Ethernet
  • it supports Bluetooth and has been installed with bluez utilities
  • it supports audio playing
  • it supports Qt 5.10.0 EGLES and OpenGL ES1.1/2.0 (Only for S5P4418/S5P6818)

6.2 System Login

  • If your board is connected to an HDMI monitor you need to use a USB mouse and keyboard.
  • If you want to do kernel development you need to use a serial communication board, ie a PSU-ONECOM board, which will

For example, NanoPi-M1:
PSU-ONECOM-M1.jpg
You can use a USB to Serial conversion board too.
Make sure you use a 5V/2A power to power your board from its MicroUSB port:
For example, NanoPi-NEO2:
USB2UART-NEO2.jpg

  • FriendlyCore User Accounts:

Non-root User:

   User Name: pi
   Password: pi

Root:

   User Name: root
   Password: fa

The system is automatically logged in as "pi". You can do "sudo npi-config" to disable auto login.

  • Update packages
$ sudo apt-get update

6.3 Configure System with npi-config

The npi-config is a commandline utility which can be used to initialize system configurations such as user password, system language, time zone, Hostname, SSH switch , Auto login and etc. Type the following command to run this utility.

$ sudo npi-config

Here is how npi-config's GUI looks like:
npi-config

6.4 Develop Qt Application

Please refer to: How to Build and Install Qt Application for FriendlyELEC Boards

6.5 Setup Program to AutoRun

You can setup a program to autorun on system boot with npi-config:

sudo npi-config

Go to Boot Options -> Autologin -> Qt/Embedded, select Enable and reboot.

6.6 Extend TF Card's Section

When FriendlyCore is loaded the TF card's section will be automatically extended.You can check the section's size by running the following command:

$ df -h

6.7 Transfer files using Bluetooth

Take the example of transferring files to the mobile phone. First, set your mobile phone Bluetooth to detectable status, then execute the following command to start Bluetooth search.:

hcitool scan


Search results look like:

Scanning ...
    2C:8A:72:1D:46:02   HTC6525LVW

This means that a mobile phone named HTC6525LVW is searched. We write down the MAC address in front of the phone name, and then use the sdptool command to view the Bluetooth service supported by the phone:

sdptool browser 2C:8A:72:1D:46:02

Note: Please replace the MAC address in the above command with the actual Bluetooth MAC address of the mobile phone.
This command will detail the protocols supported by Bluetooth for mobile phones. What we need to care about is a file transfer service called OBEX Object Push. Take the HTC6525LVW mobile phone as an example. The results are as follows:

Service Name: OBEX Object Push
Service RecHandle: 0x1000b
Service Class ID List:
  "OBEX Object Push" (0x1105)
Protocol Descriptor List:
  "L2CAP" (0x0100)
  "RFCOMM" (0x0003)
    Channel: 12
  "OBEX" (0x0008)
Profile Descriptor List:
  "OBEX Object Push" (0x1105)
    Version: 0x0100

As can be seen from the above information, the channel used by the OBEX Object Push service of this mobile phone is 12, we need to pass it to the obexftp command, and finally the command to initiate the file transfer request is as follows:

obexftp --nopath --noconn --uuid none --bluetooth -b 2C:8A:72:1D:46:02 -B 12 -put example.jpg

Note: Please replace the MAC address, channel and file name in the above command with the actual one.

After executing the above commands, please pay attention to the screen of the mobile phone. The mobile phone will pop up a prompt for pairing and receiving files. After confirming, the file transfer will start.

Bluetooth FAQ:
1) Bluetooth device not found on the development board, try to open Bluetooth with the following command:

rfkill unblock 0

2) Prompt can not find the relevant command, you can try to install related software with the following command:

apt-get install bluetooth bluez obexftp openobex-apps python-gobject ussp-push

6.8 WiFi

For either an SD WiFi or a USB WiFi you can connect it to your board in the same way. The APXX series WiFi chips are SD WiFi chips. By default FriendlyElec's system supports most popular USB WiFi modules. Here is a list of the USB WiFi modules we tested:

Index Model
1 RTL8188CUS/8188EU 802.11n WLAN Adapter
2 RT2070 Wireless Adapter
3 RT2870/RT3070 Wireless Adapter
4 RTL8192CU Wireless Adapter
5 mi WiFi mt7601

You can use the NetworkManager utility to manage network. You can run "nmcli" in the commandline utility to start it. Here are the commands to start a WiFi connection:

  • Change to root
$ su root
  • Check device list
$ nmcli dev

Note: if the status of a device is "unmanaged" it means that device cannot be accessed by NetworkManager. To make it accessed you need to clear the settings under "/etc/network/interfaces" and reboot your system.

  • Start WiFi
$ nmcli r wifi on
  • Scan Surrounding WiFi Sources
$ nmcli dev wifi
  • Connect to a WiFi Source
$ nmcli dev wifi connect "SSID" password "PASSWORD" ifname wlan0

The "SSID" and "PASSWORD" need to be replaced with your actual SSID and password.If you have multiple WiFi devices you need to specify the one you want to connect to a WiFi source with iface
If a connection succeeds it will be automatically setup on next system reboot.

For more details about NetworkManager refer to this link: Use NetworkManager to configure network settings

If your USB WiFi module doesn't work most likely your system doesn't have its driver. For a Debian system you can get a driver from Debian-WiFi and install it on your system. For a Ubuntu system you can install a driver by running the following commands:

$ apt-get install linux-firmware

In general all WiFi drivers are located at the "/lib/firmware" directory.


6.9 Ethernet Connection

If a board is connected to a network via Ethernet before it is powered on it will automatically obtain an IP with DHCP activated after it is powered up. If you want to set up a static IP refer to: Use NetworkManager to configure network settings


6.10 Select the system default audio device

You can set the system default audio device by following the steps below.
Use the following command to view all the sound card devices in the system (Note: different development boards will have different results):

pi@NanoPi:~$ aplay -l
**** List of PLAYBACK Hardware Devices ****
card 0: nanopi2audio [nanopi2-audio], device 0: c0055000.i2s-ES8316 HiFi ES8316 HiFi-0 []
  Subdevices: 1/1
  Subdevice #0: subdevice #0
card 0: nanopi2audio [nanopi2-audio], device 1: c0059000.spdiftx-dit-hifi dit-hifi-1 []
  Subdevices: 1/1
  Subdevice #0: subdevice #0

As you can see, the following sound card devices are available on the hardware:

Sound card device Sound card number Description
nanopi2audio device 0 3.5mm jack interface
nanopi2audio device 1 HDMI

To configure the audio output to the 3.5mm jack, create or modify the configuration file /etc/asound.conf and modify it to the following:

pcm.!default {
    type hw
    card 0
    device 0
}
 
ctl.!default {
    type hw
    card 0
}

To configure to output audio to HDMI, change the device 0 above to device 1.

6.11 Run the X11 application

FriendlyCore system built-in lightweight Xorg,although there is no window manager, you can still run a single X-Windows application,For example, the program to run is ~/YourX11App,use the following command:

. /usr/bin/setqt5env-xcb
startx ~/YourX11App -geometry 1280x800

Note that there is a space between "." and /usr/bin/setqt5env-xcb. In addition, the resolution after -geometry should be changed to the actual resolution of your screen.

6.12 Run Qt 5.10.0 Demo with GPU acceleration

Run the following command

$ sudo qt5demo

S5pxx18-QtE

6.13 Run Qt 5.10.0 Demo with OpenGL

Run the following command

. setqt5env
cd $QTDIR
cd /examples/opengl/qopenglwidget
./qopenglwidget

For more Qt 5.10.0 examples, please go to:
cd $QTDIR/examples/

6.14 Play HD Video with Hardware-decoding

gst-player is console player, it base on GStreamer, support VPU with Hardware-decoding:

sudo gst-player /home/pi/demo.mp4

The equivalent gsteamer command is as follows:

sudo gst-launch-1.0 filesrc location=/home/pi/demo.mp4 ! qtdemux name=demux demux. ! queue ! faad ! audioconvert ! audioresample ! alsasink device="hw:0,DEV=1" demux. ! queue ! h264parse ! nxvideodec ! nxvideosink dst-x=0 dst-y=93 dst-w=1280 dst-h=533

6.15 Connect to DVP Camera CAM500B

The CAM500B camera module is a 5M-pixel camera with DVP interface. For more tech details about it you can refer to Matrix - CAM500B.
Enter the following command to preview the video:

gst-launch-1.0 -e v4l2src device=/dev/video6 ! video/x-raw,format=I420,framerate=30/1,width=1280,height=720 ! nxvideosink

Enter the following command to start recording (VPU hardware encoding):

gst-launch-1.0 -e v4l2src device=/dev/video6 ! video/x-raw,format=I420,framerate=30/1,width=1280,height=720 ! tee name=t t. \
 ! queue ! nxvideosink t. ! queue ! nxvideoenc bitrate=12000000 ! mp4mux ! \
 filesink location=result_720.mp4

6.16 Power Off and Schedule Power On

“PMU Power Management” feature helps us to auto power on the board at a specific time, it is implemented by an MCU, support software power-off, and RTC alarm power-up functions.

Here’s a simple guide:
Turn on automatically after 100 seconds. (Time must be greater than 60 seconds.):

$ sudo echo 100 > /sys/class/i2c-dev/i2c-3/device/3-002d/wakealarm

After setting up the automatic boot, turn off board with the 'poweroff’ command:

$ sudo poweroff

Cancel automatic boot:

$ sudo echo 0 > /sys/class/i2c-dev/i2c-3/device/3-002d/wakealarm

Query the current settings, in the front is current time, followed by the time of automatic booting: If no automatic boot is set, it will display "disabled”.

$ sudo cat /sys/class/i2c-dev/i2c-3/device/3-002d/wakealarm


Note that some older versions of hardware may not support this feature, if you don't see this file node in your system:
/sys/class/i2c-dev/i2c-3/device/3-002d/wakealarm
your board may be it does not support this feature.

7 Work with Android

7.1 Work with 4G Module EC20 under Android5

7.1.1 Hardware Setup

Connect an EC20 module to a USB to miniPCIe board and connect the board to an ARM board's USB Host. Here is a hardware setup:
T2-4G-EC20.jpg
Power on the board and you will be able to surf the internet with the 4G module like using an Android phone.


Replace the logo.bmp:

/opt/FriendlyARM/smart4418/android/device/friendly-arm/nanopi3/boot/logo.bmp
/opt/FriendlyARM/smart4418/android/device/friendly-arm/nanopi2/boot/logo.bmp

Replace the bootanimation.zip:

/opt/FriendlyARM/smart4418/android/device/friendly-arm/nanopi3/bootanimation.zip
/opt/FriendlyARM/smart4418/android/device/friendly-arm/nanopi2/bootanimation.zip

Re-compile android.

8 Make Your Own OS Image

8.1 Install Cross Compiler

8.1.1 Install aarch64-linux-gcc 6.4

Download the compiler package:

git clone https://github.com/friendlyarm/prebuilts.git
sudo mkdir -p /opt/FriendlyARM/toolchain
sudo tar xf prebuilts/gcc-x64/aarch64-cortexa53-linux-gnu-6.4.tar.xz -C /opt/FriendlyARM/toolchain/

Then add the compiler's directory to "PATH" by appending the following lines in "~/.bashrc":

export PATH=/opt/FriendlyARM/toolchain/6.4-aarch64/bin:$PATH
export GCC_COLORS=auto

Execute "~/.bashrc" to make the changes take effect. Note that there is a space after the first ".":

. ~/.bashrc

This compiler is a 64-bit one therefore it cannot be run on a 32-bit Linux machine. After the compiler is installed you can verify it by running the following commands:

aarch64-linux-gcc -v
Using built-in specs.
COLLECT_GCC=aarch64-linux-gcc
COLLECT_LTO_WRAPPER=/opt/FriendlyARM/toolchain/6.4-aarch64/libexec/gcc/aarch64-cortexa53-linux-gnu/6.4.0/lto-wrapper
Target: aarch64-cortexa53-linux-gnu
Configured with: /work/toolchain/build/aarch64-cortexa53-linux-gnu/build/src/gcc/configure --build=x86_64-build_pc-linux-gnu
--host=x86_64-build_pc-linux-gnu --target=aarch64-cortexa53-linux-gnu --prefix=/opt/FriendlyARM/toolchain/6.4-aarch64
--with-sysroot=/opt/FriendlyARM/toolchain/6.4-aarch64/aarch64-cortexa53-linux-gnu/sysroot --enable-languages=c,c++
--enable-fix-cortex-a53-835769 --enable-fix-cortex-a53-843419 --with-cpu=cortex-a53
...
Thread model: posix
gcc version 6.4.0 (ctng-1.23.0-150g-FA)

8.1.2 Install arm-linux-gcc 4.9.3

Download the compiler package:

git clone https://github.com/friendlyarm/prebuilts.git
sudo mkdir -p /opt/FriendlyARM/toolchain
sudo tar xf prebuilts/gcc-x64/arm-cortexa9-linux-gnueabihf-4.9.3.tar.xz -C /opt/FriendlyARM/toolchain/

Then add the compiler's directory to "PATH" by appending the following lines in "~/.bashrc":

export PATH=/opt/FriendlyARM/toolchain/4.9.3/bin:$PATH
export GCC_COLORS=auto

Execute "~/.bashrc" to make the changes take effect. Note that there is a space after the first ".":

. ~/.bashrc

This compiler is a 64-bit one therefore it cannot be run on a 32-bit Linux machine. After the compiler is installed you can verify it by running the following commands:

arm-linux-gcc -v
Using built-in specs.
COLLECT_GCC=arm-linux-gcc
COLLECT_LTO_WRAPPER=/opt/FriendlyARM/toolchain/4.9.3/libexec/gcc/arm-cortexa9-linux-gnueabihf/4.9.3/lto-wrapper
Target: arm-cortexa9-linux-gnueabihf
Configured with: /work/toolchain/build/src/gcc-4.9.3/configure --build=x86_64-build_pc-linux-gnu
--host=x86_64-build_pc-linux-gnu --target=arm-cortexa9-linux-gnueabihf --prefix=/opt/FriendlyARM/toolchain/4.9.3
--with-sysroot=/opt/FriendlyARM/toolchain/4.9.3/arm-cortexa9-linux-gnueabihf/sys-root --enable-languages=c,c++
--with-arch=armv7-a --with-tune=cortex-a9 --with-fpu=vfpv3 --with-float=hard
...
Thread model: posix
gcc version 4.9.3 (ctng-1.21.0-229g-FA)

8.2 Compile Linux kernel 4.4.y

8.2.1 Compile Kernel

  • Download Kernel Source Code
git clone https://github.com/friendlyarm/linux.git -b nanopi2-v4.4.y --depth 1
cd linux

The kernel source for S5P6818 is in the "nanopi2-v4.4.y" branch. Before you start compiling it you need to switch to this branch.

  • Compile Ubuntu Kernel
touch .scmversion
make ARCH=arm64 nanopi3_linux_defconfig
make ARCH=arm64

After your compilation succeeds an "arch/arm/boot/Image" will be generated and a DTB file(s5p6818-nanopi3-rev*.dtb) will be generated in the "arch/arm/boot/dts/nexell" directory. You can use them to replace the existing Image and DTB files in the boot partition of your bootable SD card.

8.2.2 Use Your Generated Kernel

  • Update kernel in SD card

If you use an SD card to boot Ubuntu you can copy your generated Image and DTB files to your SD card's boot partition(e.g. partition 1 /dev/sdX1).

  • Update kernel in eMMC

If you boot your board from eMMC you can update your kernel file by following the steps below:
1) Usually after OS is loaded eMMC's boot partition (in our example eMMC's device name was /dev/mmcblk0p1) will be automatically mounted and you can verify that by running "mount"
2) Connect your board to a host PC running Ubuntu and copy the Image and DTB files to eMMC's boot partition
3) Or you can copy your generated kernel file to an external storage card(e.g. an SD card or a USB drive), connect the storage card to your board the move the file from the card to eMMC's boot partition
4) After update is done type "reboot" to reboot your board. Note: don't just directly disconnect your board from its power source or press the reset button to reboot the board. These actions will damage your kernel file

  • Generate Your boot.img

If you want to generate an image file that can be flashed to eMMC you need to generate a boot.img file and then copy it to your installation SD card
For Ubuntu follow the steps below to generate a boot.img file:
1) Download debian_nanopi2

git clone https://github.com/friendlyarm/debian_nanopi2.git

2) Copy the Image and DTB files to replace the corresponding files under the "debian_nanopi2/boot/" directory
3) Generate boot.img

cd debian_nanopi2
mkdir rootfs
./build.sh

A newly generated boot.img will be under the "debian_nanopi2/sd-fuse_nanopi2/debian" directory.
The "mkdir rootfs" command creates a working directory for the build.sh script to run. It also creates some files such as "rootfs.img" but these files are useless.

8.2.3 Compile U-Boot

Download the U-Boot v2016.01 source code and compile it. Note that the github's branch is nanopi2-v2016.01:

git clone https://github.com/friendlyarm/u-boot.git 
cd u-boot
git checkout nanopi2-v2016.01
make make s5p6818_nanopi3_defconfig
make CROSS_COMPILE=aarch64-linux-

After your compilation succeeds a fip-nonsecure.img will be generated. If you want to test it flash it to your installation SD card to replace an existing U-Boot v2016.01 file via fastboot, sd-fuse_s5p6818 or eflasher ROM.
Note: you cannot use mixed U-Boot files. For example you cannot use fastboot to update an existing U-Boot V2014.07 and you cannot use bootloader.img to replace an existing u-boot.bin.

8.3 Compile Linux kernel 3.4.y

8.3.1 Prepare mkimage

You need the mkimage utility to compile a U-Boot source code package. Make sure this utility works well on your host before you start compiling a uImage.
You can install this utility by either commanding "sudo apt-get install u-boot-tools" or following the commands below:

cd uboot_nanopi2
make CROSS_COMPILE=arm-linux- tools
sudo mkdir -p /usr/local/sbin && sudo cp -v tools/mkimage /usr/local/sbin

8.3.2 Compile Linux Kernel

  • Download Kernel Source Code
git clone https://github.com/friendlyarm/linux-3.4.y.git
cd linux-3.4.y
git checkout nanopi2-lollipop-mr1

The NanoPi-Fire3's kernel source code lies in the "nanopi2-lollipop-mr1" branch.

  • Compile Android Kernel
make nanopi3_android_defconfig
touch .scmversion
make uImage
  • Compile Debian Kernel
make nanopi3_linux_defconfig
touch .scmversion
make uImage

After your compilation succeeds a uImage will be generated in the "arch/arm/boot/" directory. This kernel is for LCD output. You can use it to replace the existing uImage.
If you want to generate a kernel for HDMI output you need to run nanopi3_linux_hdmi_defconfig and do it this way:

make nanopi3_linux_hdmi_defconfig
touch .scmversion
make uImage

After your compilation succeeds a uImage.hdmi will be generated for HDMI 720P. If you want a uImage.hdmii for 1080P you can do it this way:

touch .scmversion
make nanopi3_linux_hdmi_defconfig
make menuconfig
  Device Drivers -->
    Graphics support -->
      Nexell Graphics -->
        [ ] LCD
        [*] HDMI
        (0)   Display In  [0=Display 0, 1=Display 1]
              Resolution (1920 * 1080p)  --->
make uImage

After your compilation succeeds a uImage.hdmi will be generated for HDMI 1080P. You can use it to replace the existing uImage.hdmi.

8.3.3 Use Your Generated Kernel

  • Update the kernel file in SD card

If you use an SD card to boot Android you can copy your generated uImage file to your SD card's boot partition(e.g. partition 1 /dev/sdX1).
If you use an SD card to Debian and you generated a uImage for an HDMI monitor you can use that uImage to replace the uImage.hdmi file in the SD card's boot partition. If you use an SD card to Debian and you generated a uImage for an LCD you can use that uImage to replace the uImage file in the SD card's boot partition.

  • Update Android kernel file in eMMC

If you want to update the kernel file in eMMC you need firstly boot your board, then mount eMMC's boot partition, replace the boot partition's kernel file with your generated one and reboot your board.
If you boot your board from eMMC you can update your kernel file by following the steps below:
1) After Android is loaded mount eMMC's boot partition (in our example eMMC's device name was /dev/mmcblk0p1) by using the following commands:

su
mount -t ext4 /dev/block/mmcblk0p1 /mnt/media_rw/sdcard1/

2) Connect your board to a host PC running Ubuntu with a MicroUSB cable and copy the uImage file to eMMC's boot partition by running the following commands

adb push uImage /mnt/media_rw/sdcard1/

3) Or you can copy your generated kernel file to an external storage card(e.g. an SD card or a USB drive), connect the storage card to your board the move the file from the card to eMMC's boot partition
4) After update is done type "reboot" and enter to reboot your board. Note: don't just directly disconnect your board from its power source or press the reset button to reboot the board. These actions will damage your kernel file

  • Update Debian kernel file in eMMC

If you boot your board from eMMC you can update your kernel file by following the steps below:
1) When Debian is being loaded eMMC's boot partition will be automatically mounted(in our example eMMC's device name was /dev/mmcblk0p1). You can use "mount" to verify that
2) Connect your board to a host PC via Ethernet and copy your generated uImage file via scp/ftp to eMMC's boot partition and replace the existing file. If your file is for LCD output use your uImage file to replace the existing uImage. If your file is for HDMI output use your uImage.hdmi file to replace the existing uImage.hdmi file
3) Or you can copy your generated kernel file to an external storage card(e.g. an SD card or a USB drive), connect the storage card to your board the move the file from the card to eMMC's boot partition
4) After update is done type in "reboot" to reboot your board. Note: don't just directly disconnect your board from its power source or press the reset button to reboot the board. These actions will damage your kernel file

  • Generate Your boot.img

If you want to generate an image file that can be flashed to eMMC you need to generate a boot.img file and copy it to your installation SD card
For Android copy the uImage file to Android source code's "device/friendly-arm/nanopi3/boot/" directory and compile this whole Android source code. After your compilation is successful you will get a boot.img file.
For Debian follow the steps below to generate a boot.img file
1) Download debian_nanopi2

git clone https://github.com/friendlyarm/debian_nanopi2.git

2) Copy the image file for an HDMI monitor and use it to replace the "debian_nanopi2/boot/uImage.hdmi" file and copy the image file for an LCD and use it to replace the "debian_nanopi2/boot/uImage" file
3) Generate Debian's boot.img

cd debian_nanopi2
mkdir rootfs
./build.sh

A newly generated boot.img will be under the "debian_nanopi2/sd-fuse_nanopi2/debian" directory.
The "mkdir rootfs" command creates a working directory for the build.sh script to run. It also creates some files such as "rootfs.img" but these files are useless.

8.3.4 Compile Kernel Modules

Android contains kernel modules which are in the "/lib/modules" directory in the system partition. If you want to add your own modules to the kernel or you changed your kernel configurations you need to recompile these new modules.
Compile Original Kernel Modules:

cd linux-3.4.y
make CROSS_COMPILE=arm-linux- modules

Here we have two new modules and we can compile them by running the commands below:

cd /opt/FriendlyARM/s5p6818/android
./vendor/friendly-arm/build/common/build-modules.sh

The "/opt/FriendlyARM/s5p6818/android" directory points to the top directory of Android source code. You can get more details by specifying option "-h".
After your compilation succeeds new modules will be generated

8.3.5 Compile U-Boot

Download the U-Boot v2014.07 source code and compile it. Note that the github's branch is nanopi2-lollipop-mr1:

git clone https://github.com/friendlyarm/uboot_nanopi2.git
cd uboot_nanopi2
git checkout nanopi2-lollipop-mr1
make s5p6818_nanopi3_config
make CROSS_COMPILE=arm-linux-

After compilation is done a u-boot.bin will be generated and you can update your NanoPi-Fire3's u-boot with fastboot by running the following commands:
1) On your host PC run "sudo apt-get install android-tools-fastboot" to installl the fastboot utility;
2) Connect your NanoPi-Fire3 to your host PC, boot your NanoPi-Fire3 and press "Enter" within two seconds right after your board is powered on and you will enter the u-boot commandline:
3) In the commandline window type "fastboot" and then press "Enter" to enter the fastboot mode:
4) Connect your NanoPi-Fire3 to a host PC with a MicroUSB cable and run the following commands in the commandline window to flash u-boot.bin to your NanoPi-Fire3:

fastboot flash bootloader u-boot.bin


Note:you cannot use "dd" to update your SD card in this situation.

8.4 Compile Android

8.4.1 Install Cross Compiler

Install 64 bit Ubuntu 16.04 on your host PC.

sudo apt-get install bison g++-multilib git gperf libxml2-utils make python-networkx zip
sudo apt-get install flex libncurses5-dev zlib1g-dev gawk minicom

For more details refer to https://source.android.com/source/initializing.html

8.4.2 Download Android5.1 source code

There are two ways to download the source code:

  • repo archive file on netdisk

Netdisk URL: Click here
File location on netdisk:sources/s5pxx18-android5.git-YYYYMMDD.tgz (YYYYMMDD表示打包的日期)
After extracting the repo package from the network disk, you need to execute the sync.sh script, which will pull the latest code from gitlab:

tar xvzf /path/to/netdisk/sources/s5pxx18-android5.git-20181228.tgz
cd s5pxx18-android5
./sync.sh
  • git clone from gitlab

NanoPi-Fire3 source code is maintained in gitlab, You can download it by running the following command:

git clone https://gitlab.com/friendlyelec/s5pxx18-android5
cd s5pxx18-android5

8.4.3 Compile Android

source build/envsetup.sh
lunch aosp_nanopi3-userdebug
make -j8

After your compilation succeeds an image will be generated in the "out/target/product/nanopi3/" directory.

filename partition Description
boot.img boot -
cache.img cache -
userdata.img userdata -
system.img system -
partmap.txt - partition description file

8.4.4 Flash Image to SD Card

If you want to boot your board from an SD card you need to copy your generated image file to the "sd-fuse_s5p6818 /android/" directory and flash it to your SD card with our script. For more details refer to # Make an Installation SD Card under Linux Desktop

8.4.5 Flash Image to eMMC

After compiling Android successfully you can flash it to eMMC with either of the following methods:
1) fastboot: right after the NanoPi-Fire3 is booted from eMMC press any key to enter the uboot commandline mode and type in "fastboot"
Connect your board to a host PC running Ubuntu with a USB cable and run the following commands in the PC's terminal:

cd out/target/product/nanopi3
sudo fastboot flash boot boot.img
sudo fastboot flash cache cache.img
sudo fastboot flash userdata userdata.img
sudo fastboot flash system system.img
sudo fastboot reboot

2) Use an SD Card
Copy these files: boot.img, cache.img, userdata.img, system.img, partmap.txt from the out/target/product/nanopi3 directory to your installation SD card's images/android directory and you can use this SD card to flash Android to eMMC.

9 Connect NanoPi-Fire3 to External Modules

9.1 Connect NanoPi-Fire3 to USB Camera(FA-CAM202)

  • In this use case the NanoPi-Fire3 runs Debian. If you connect your NanoPi-Fire3 to our LCD or an HDMI monitor after Debain is fully loaded click on "other"-->"xawtv" on the left bottom of the GUI and the USB Camera application will be started. After enter "welcome to xawtv!" click on "OK" to start exploring.

USB camera USB camera-01

9.2 Connect NanoPi-Fire3 to CMOS 5M-Pixel Camera

For more details about the CAM500A camera refer to [1]

  • If your NanoPi-Fire3 runs Android5.1 and it is connected to our LCD or an HDMI monitor after Android is fully loaded click on the "Camera" icon and the application will be started. You can take pictures or record videos

CMOS camera

  • Under Debian a camera utility "nanocams" is available for previewing 40 frames and picture taking. You can try it by following the commands below
sudo nanocams -p 1 -n 40 -c 4 -o IMG001.jpg

For more details about the usage of the nanocams run "nanocams -h". You can get its source code from our git hub:

git clone https://github.com/friendlyarm/nexell_linux_platform.git
  • Under FriendlyCore (kernel 4.4), You can try it by following the commands below:

Enter the following command to preview the video:

gst-launch-1.0 -e v4l2src device=/dev/video6 ! video/x-raw,format=I420,framerate=30/1,width=1280,height=720 ! nxvideosink

Enter the following command to start recording (VPU hardware encoding):

gst-launch-1.0 -e v4l2src device=/dev/video6 ! video/x-raw,format=I420,framerate=30/1,width=1280,height=720 ! tee name=t t. \
 ! queue ! nxvideosink t. ! queue ! nxvideoenc bitrate=12000000 ! mp4mux ! \
 filesink location=result_720.mp4

9.3 Use OpenCV to Access USB Camera

  • The full name of "OpenCV" is Open Source Computer Vision Library and it is a cross platform vision library.
  • When the NanoPi-Fire3 runs Debian users can use OpenCV APIs to access a USB Camera device.

1. Here is a guideline on how to use OpenCV with C++ on the NanoPi-Fire3:

  • Firstly you need to make sure your NanoPi-Fire3 is connected to the internet.Login to your NanoPi-Fire3 via a serial terminal or SSH. After login type in your username(root) and password(fa):
  • Run the following commands:


apt-get update
apt-get install libcv-dev libopencv-dev

2. Make sure your USB camera works with the NanoPi-Fire3. You can test your camera with NanoPi-Fire3's camera utility.

3. Check your camera device:

ls /dev/video*
  • Note:in our test case video0 was the device name.

4. OpenCV's code sample(official code in C++) is under /home/fa/Documents/opencv-demo. Compile the code sample with the following commands:

cd /home/fa/Documents/opencv-demo
make

After it is compiled successfully a "demo" executable will be generated

5. Connect NanoPi-Fire3 to USB Keyboard & Run the Following Command:

./demo

opencv is successfully started

9.4 Connect NanoPi-Fire3 to Matrix GPS Module

  • The Matrix-GPS module is a small GPS module with high performance. It can be used in navigation devices, four-axle drones and etc.
  • The Matrix-GPS module uses serial communication. When the NanoPi-Fire3 is connected to the Matrix GPS module, after the NanoPi-Fire3 is powered up type in the following command in a terminal or click on the xgps icon it will be started.
$su - fa -c "DISPLAY=:0 xgps 127.0.0.1:9999"
  • Or on the Debian GUI start the LXTerminal, type in "xgps" and enter it will be started too.

For more details about this GPS module refer to Click to check
Refer to the following diagram to connect the NanoPi-Fire3 to the Matrix-GPS:
GPS_NanoPC-T2

Connection Details:

Matrix-GPS NanoPi-Fire3
RXD Pin11
TXD Pin12
5V Pin29
GND Pin30

10 Access Hardware under Android

FriendlyElec developed a library called “libfriendlyarm-things.so”, for android developer to access the hardware resources on the development board in their android apps, the library is based on Android NDK.
Accessible Modules:

  • Serial Port
  • PWM
  • EEPROM
  • ADC
  • LED
  • LCD 1602 (I2C)
  • OLED (SPI)


Interfaces & Ports:

  • GPIO
  • Serial Port
  • I2C
  • SPI


Refer to the following url for details:

11 Connect NanoPi-Fire3 to FriendlyARM LCD Modules

  • Android

Here are the LCDs that are supported under Android:S430, S700/S701, S702, HD700, HD702, HD101 and X710 all of which are LCDs with capacitive touch.

  • FriendlyCore & Lubuntu Desktop

Here are the LCDs that are supported under FriendlyCore and Lubuntu Desktop:S430, S700/S701, S702, HD700, HD702, HD101 and X710 all of which are LCDs with capacitive touch;
W35B, H43, P43, S70D and Matrix 2.8" SPI Key TFT LCD all of which are LCDs with resistive touch
All these LCD's tech details can be obtained on our wiki site:LCDModules

12 Schematics & Mechanical drawing

13 Source Code and Image Files Download Links

  • Image File: [2]
  • Source Code: [3]

14 Tech Support

If you have any further questions please visit our forum http://www.friendlyarm.com/Forum/ and post a message or email us at techsupport@friendlyarm.com. We will endeavor to get back to you as soon as possible.

15 Update Log

15.1 2019-07-18

  • Introducing a new system Android 7.1.2

1) Features similar to the old version of Android 5, support 4G, WiFi, Ethernet, Bluetooth, etc.
2) Kernel version: 4.4.172
3) Known issue: The camera is not working yet

  • Android/FriendlyCore/Lubuntu updated as follows:

1) Fix an issue where HD101B can't be touched in some cases
2) Fix GPIO configuration of Power key
3) Solve the problem of too small volume: the volume of the DAC is changed from -20dB to -6dB during playback.
4) Add more models of USB Wi-Fi support, built-in driver rtl8821CU.ko, rtl88XXau.ko

  • Updates for Lubuntu only:

1) Modify Lubuntu's Power key behavior to (without pop-ups) shut down directly
2) Add script xrotate.sh to simplify screen rotation settings (Note: screen rotation will lose performance)

  • The following updates are only available for NanoPC T3/T3+, Smart6818:

Support for reading Ethernet Mac addresses from the onboard EEPROM, only supports the following systems: FriendlyCore, Lubuntu, Android7

15.2 2019-06-25

Linux(Ubuntu 16.04/18.04) uses OverlayFS to enhance filesystem stability.

15.3 2019-06-03

1) Configure LED1 to be in heartbeat mode
2) Fix HDMI 1080P may have no display problem in some cases
3) Fix the issue that mysql cannot be installed under Linux
4) Fix the issue that the 1-wire touch resistance screen cannot be used under lubuntu

15.4 2019-01-24

1) Update uboot-v2014.07, uboot-v2016.01 for HD702V LCD
2) Adjust Qt5 font path

15.5 2018-12-17

  • Android5 updated as follows:

1) Add support for 4G network, support module: Quectel EC20
2) Add audio setting UI, you can set the default output to headphones or HDMI
3) Synchronously turn off the backlight of the one-line touch screen when the system Shutdown

  • FriendlyCore updated as follows:

1) Add OV5640 camera support
2) Update BL1 to improve system startup stability

  • Lubuntu updated as follows:

1) Add Chrome-browser browser, support web page 1080P hardware decoding, support WebGL
2) Set the audio output channel to HDMI by default (can be changed via /etc/asound.conf)
3) Update BL1 to improve system startup stability
4) Fixed some issues regarding the package error in the previous version
5) Adjust DPMS settings, turn off automatic sleep by default

15.6 April-28-2016

  • Released English version

15.7 June-30-2016

  • Added sections 5.2.4 and 8

15.8 Sep-27-2016

  • Added section 9
  • Updated sections 5.2.2 and 8.2

15.9 Nov-2-2016

  • Updated sections 6.4 and 11

15.10 June-20-2017

  • Updated sections 6.2 and 6.3: wireless connection and setting up WIFI AP
  • Updated section 8.4.1: added compiling kernel for UbuntuCore
  • Added section 3: software features
  • Added section 7: UbuntuCore
  • Added section 9.5: LCD support

15.11 March-28-2018

  • Updated sections 6.10