Difference between revisions of "NanoPi Duo2"

From FriendlyARM WiKi
Jump to: navigation, search
(updated by API)
(Diagram, Layout and Dimension)
(35 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
[[NanoPi Duo2/zh|查看中文]]
 
[[NanoPi Duo2/zh|查看中文]]
  
==介绍==
+
==Introduction==
[[File:NanoPi Duo2-1.jpg|thumb|frameless|300px|概览]]
+
[[File:NanoPi Duo2-1.jpg|thumb|frameless|300px|Overview]]
[[File:NanoPi Duo2-2.jpg|thumb|frameless|300px|正面]]
+
[[File:NanoPi Duo2-2.jpg|thumb|frameless|300px|Front]]
[[File:NanoPi Duo2-3.jpg|thumb|frameless|300px|背面]]
+
[[File:NanoPi Duo2-3.jpg|thumb|frameless|300px|Back]]
* NanoPi Duo2(以下简称Duo2)是友善之臂团队开发的一款双列直插超小型创客神器,尺寸只有55x25.4mm。它采用全志四核A7处理器H3, 配备256M/512M DDR3内存,板载WiFi 蓝牙模块,并提供OV5640摄像头接口,可运行完整的Ubuntu Core等嵌入式Linux系统。
+
* The NanoPi Duo2("Duo2") is an ARM board designed and developed by FriendlyELEC for makers and hobbyists. It is only 55 x 25.4mm. It features Allwinner quad-core A7 processor H3, and has 256M/512M DDR3 RAM, onboard WiFi & bluetooth module and an OV5640 camera interface. It works with Linux variants such as Ubuntu Core.
* NanoPi Duo2小巧精致,接口丰富,可采用MicroUSB直接供电,支持Micro SD卡直接启动运行系统,并可直接插入面包板使用。它引出了USB, SPI, UART, I2C, PWM, IR,音频输入与输出,百兆以太网等接口管脚,非常方便调试开发。
+
* The NanoPi Duo2 is tiny and compact with rich interfaces and ports. It takes power input from its MicroUSB port and can be booted from a Micro SD card. It works with general bread-boards. Interface pins such as USB, SPI, UART, I2C, PWM, IR, audio input & output and Fast Ethernet etc are populated.
* NanoPi Duo2可支持使用WiringNP, Python等编程库, 完全开源, 非常适合轻量级IoT应用开发。
+
* The NanoPi Duo2 supports software utilities such as WiringNP and Python etc. These are all open source. It is suited for various IoT applications.
  
==资源特性==
+
==Hardware Spec==
 
* CPU: Allwinner H3, Quad-core Cortex-A7 Up to 1.2GHz
 
* CPU: Allwinner H3, Quad-core Cortex-A7 Up to 1.2GHz
 
* DDR3 RAM: 512M
 
* DDR3 RAM: 512M
Line 26: Line 26:
 
* PCB Dimension: 25.4 x 55mm
 
* PCB Dimension: 25.4 x 55mm
 
* Power Supply: DC 5V/2A
 
* Power Supply: DC 5V/2A
* Temperature measuring range: -40℃ to 80℃
+
* Temperature measuring range: -20℃ to 70℃
* OS/Software: U-boot,Linux Kernel 4.11.2 (mainline) , Ubuntu 16.04.2 LTS (Xenial)
+
* OS/Software: U-boot,Linux-4.14 / Linux-3.4, Ubuntu 16.04.2 LTS (Xenial)
 
* Weight: xxg(With Pin-headers)
 
* Weight: xxg(With Pin-headers)
  
==接口布局和尺寸==
+
==Diagram, Layout and Dimension==
===接口布局===
+
===Layout===
[[File:NanoPi-Duo2-layout.jpg |thumb|500px|NanoPi Duo2接口布局]]
+
[[File:NanoPi-Duo2-layout.jpg |thumb|500px|NanoPi Duo2 Layout]]
 
[[File:Duo pinout2-02.jpg|thumb|frameless|500px|pinout]]
 
[[File:Duo pinout2-02.jpg|thumb|frameless|500px|pinout]]
* '''GPIO管脚定义'''
+
* '''GPIO Pin Spec'''
 
::{| class="wikitable"
 
::{| class="wikitable"
 
|-
 
|-
 
| style="background: PaleTurquoise; color: black" colspan="1"| '''Pin#''' || style="background: PaleTurquoise; color: black" colspan="1"| '''GPIO1'''|| style="background: PaleTurquoise; color: black" colspan="1"| '''Name'''|| style="background: PaleTurquoise; color: black" colspan="1"| '''Linux gpio'''|| || style="background: PaleTurquoise; color: black" colspan="1"| '''Pin#'''|| style="background: PaleTurquoise; color: black" colspan="1"| '''GPIO2'''|| style="background: PaleTurquoise; color: black" colspan="1"| '''Name'''|| style="background: PaleTurquoise; color: black" colspan="1"| '''Linux gpio'''  
 
| style="background: PaleTurquoise; color: black" colspan="1"| '''Pin#''' || style="background: PaleTurquoise; color: black" colspan="1"| '''GPIO1'''|| style="background: PaleTurquoise; color: black" colspan="1"| '''Name'''|| style="background: PaleTurquoise; color: black" colspan="1"| '''Linux gpio'''|| || style="background: PaleTurquoise; color: black" colspan="1"| '''Pin#'''|| style="background: PaleTurquoise; color: black" colspan="1"| '''GPIO2'''|| style="background: PaleTurquoise; color: black" colspan="1"| '''Name'''|| style="background: PaleTurquoise; color: black" colspan="1"| '''Linux gpio'''  
 
|-
 
|-
| 1 || 5V  || VDD_5V        ||    ||  || 17 || RXD  || DEBUG_RX(UART_RXD0)/GPIOA5/PWM0 || 5  
+
| 1 || 5V  || VDD_5V        ||    ||  || 2 || RXD  || DEBUG_RX(UART_RXD0)/GPIOA5/PWM0 || 5  
 
|-
 
|-
| 2 || 5V  || VDD_5V        ||    ||  || 18 || TXD  || DEBUG_TX(UART_TXD0)/GPIOA4 ||  4  
+
| 3 || 5V  || VDD_5V        ||    ||  || 4 || TXD  || DEBUG_TX(UART_TXD0)/GPIOA4 ||  4  
 
|-  
 
|-  
| 3 || 3V3  || SYS_3.3V      ||    ||  || 19 || GND  || GND      ||   
+
| 5 || 3V3  || SYS_3.3V      ||    ||  || 6 || GND  || GND      ||   
 
|-
 
|-
| 4 || GND  || GND            ||    ||  || 20 || SCL  || I2C0_SCL/GPIOA11 || 11   
+
| 7 || GND  || GND            ||    ||  || 8 || SCL  || I2C0_SCL/GPIOA11 || 11   
 
|-
 
|-
| 5 || IRRX || GPIOL11/IR-RX  || 363 ||  || 21 || SDA  || I2C0_SDA/GPIOA12 || 12
+
| 9 || IRRX || GPIOL11/IR-RX  || 363 ||  || 10 || SDA  || I2C0_SDA/GPIOA12 || 12
 
|-
 
|-
| 6 || PG11 || GPIOG11        || 203 ||  || 21 || CS  || UART3_TX/SPI1_CS/GPIOA13 ||  13  
+
| 11 || PG11 || GPIOG11        || 203 ||  || 12 || CS  || UART3_TX/SPI1_CS/GPIOA13 ||  13  
 
|-
 
|-
| 7 || DM3  || USB-DM3        ||    ||  || 23 || CLK  || UART3_RX/SPI1_CLK/GPIOA14 ||  14  
+
| 13 || DM3  || USB-DM3        ||    ||  || 14 || CLK  || UART3_RX/SPI1_CLK/GPIOA14 ||  14  
 
|-
 
|-
| 8 || DP3  || USB-DP3        ||    ||  || 24 ||MISO || UART3_CTS/SPI1_MISO/GPIOA16  ||  16
+
| 15 || DP3  || USB-DP3        ||    ||  || 16 ||MISO || UART3_CTS/SPI1_MISO/GPIOA16  ||  16
 
|-
 
|-
| 9 || DM2  || USB-DM2        ||    ||  || 25 || MOSI || UART3_RTS/SPI1_MOSI/GPIOA15 ||  15   
+
| 17 || DM2  || USB-DM2        ||    ||  || 18 || MOSI || UART3_RTS/SPI1_MOSI/GPIOA15 ||  15   
 
|-
 
|-
| 10 || DP2  || USB-DP2      ||    ||  || 26 || RX1  || UART1_RX/GPIOG7 || 199
+
| 19 || DP2  || USB-DP2      ||    ||  || 20 || RX1  || UART1_RX/GPIOG7 || 199
 
|-
 
|-
| 11 || RD-  || EPHY-RXN      ||    ||  || 27 || TX1  || UART1_TX/GPIOG6|| 198  
+
| 21 || RD-  || EPHY-RXN      ||    ||  || 22 || TX1  || UART1_TX/GPIOG6|| 198  
 
|-
 
|-
| 12 || RD+  || EPHY-RXP      ||    ||  || 28 || CVBS || CVBS      ||  
+
| 23 || RD+  || EPHY-RXP      ||    ||  || 24 || CVBS || CVBS      ||  
 
|-
 
|-
| 13 || TD-  || EPHY-TXN      ||    ||  || 29 ||LL  || LINEOUT_L  ||   
+
| 25 || TD-  || EPHY-TXN      ||    ||  || 26 ||LL  || LINEOUT_L  ||   
 
|-
 
|-
| 14 || TD+  || EPHY-TXP      ||    ||  || 30 ||LR  || LINEOUT_R  ||
+
| 27 || TD+  || EPHY-TXP      ||    ||  || 28 ||LR  || LINEOUT_R  ||
 
|-
 
|-
| 15 || LNK  || EPHY-LED-LINK ||    ||  || 31 || MP  || MIC_P  ||  
+
| 29 || LNK  || EPHY-LED-LINK ||    ||  || 30 || MP  || MIC_P  ||  
 
|-
 
|-
| 16 || SPD  || EPHY-LED-SPD  ||    ||  || 32 ||MN  || MIC_N  ||  
+
| 31 || SPD  || EPHY-LED-SPD  ||    ||  || 32 ||MN  || MIC_N  ||  
 +
|}
 +
 
 +
* '''Camera(OV5640)Pin Spec'''
 +
::{| class="wikitable"
 +
|-
 +
| style="background: PaleTurquoise; color: black" colspan="1"| '''Pin#''' || style="background: PaleTurquoise; color: black" colspan="1"| '''Name'''
 +
|-
 +
| 1 || NC1   
 +
|-
 +
| 2 || AGND 
 +
|-
 +
| 3 || SIO-D 
 +
|-
 +
| 4 || AVDD
 +
|-
 +
| 5 || SIO-C
 +
|-
 +
| 6 || RESER
 +
|-
 +
| 7 || VSYNC
 +
|-
 +
| 8 || PWDN
 +
|-
 +
| 9 || HREF
 +
|-
 +
| 10 || DVDD
 +
|-
 +
| 11 || DOVDD
 +
|-
 +
| 12 || Y9/MDP1
 +
|-
 +
| 13 || XCLK
 +
|-
 +
| 14 || Y8/MDN1
 +
|-
 +
| 15 || DGND
 +
|-
 +
| 16 || Y7/MCP
 +
|-
 +
| 17 || PCLK
 +
|-
 +
| 18 || Y6/MCN
 +
|-
 +
| 19 || Y2
 +
|-
 +
| 20 || Y5/MDP0
 +
|-
 +
| 21 || Y3
 +
|-
 +
| 22 || Y4/MDN0
 +
|-
 +
| 23 || AF-VDD
 +
|-
 +
| 24 || NC2
 
|}
 
|}
  
  
:'''说明'''
+
:'''Note'''
::#SYS_3.3V: 3.3V电源输出
+
::#SYS_3.3V: 3.3V power output
::#VDD_5V: 5V电源输入/输出。当电压大于MicroUSB时,向板子供电,否则板子从MicroUSB取电。输入范围:4.7~5.6V
+
::#VDD_5V: 5V power input/output. When the external device’s power is greater than the MicroUSB's the external device is charging the board otherwise the board powers the external device. The input range is 4.7V ~ 5.5V.
::#全部信号引脚均为3.3V电平,输出电流为5mA,可以带动小负荷模块,io都不能带负载
+
::#All pins are 3.3V, output current is 5mA.
::#更详细的信息请查看原理图,[http://wiki.friendlyarm.com/wiki/images/c/c1/Schematic_NanoPi_Duo2-V1_0-1807.pdf  NanoPi Duo2原理图]
+
::#For more details refer to :[http://wiki.friendlyarm.com/wiki/images/c/c1/Schematic_NanoPi_Duo2-V1_0-1807.pdf  NanoPi Duo2 Schematic]
  
===机械尺寸===
+
===Dimensional Diagram===
 
[[File:NanoPi-Duo2-V1.0_1807-dimensions.png|frameless|550px|]]
 
[[File:NanoPi-Duo2-V1.0_1807-dimensions.png|frameless|550px|]]
  
::详细尺寸:[http://wiki.friendlyarm.com/wiki/index.php/File:Dimensions_NanoPi_Duo2_V1.0_1807_PCB.rar NanoPi_Duo2_V1.0_1807 pcb的dxf文件]
+
::For more details refer to :[http://wiki.friendlyarm.com/wiki/index.php/File:Dimensions_NanoPi_Duo2_V1.0_1807_PCB.rar NanoPi_Duo2_V1.0_1807 pcb in dxf format]
  
==快速入门==
+
==Get Started==
===准备工作===
+
===Essentials You Need===
要开启你的NanoPi Duo2新玩具,请先准备好以下硬件
+
Before starting to use your NanoPi NEO get the following items ready
* NanoPi Duo2主板
+
* NanoPi Duo2
* microSD卡/TF卡: Class10或以上的 8GB SDHC卡
+
* microSD Card/TFCard: Class 10 or Above, minimum 8GB SDHC
* 一个microUSB接口的外接电源,要求输出为5V/2A(可使用同规格的手机充电器)
+
* microUSB power. A 5V/2A power is a must
* 一台电脑,需要联网,建议使用Ubuntu 16.04 64位系统
+
* A Host computer running Ubuntu 16.04 64 bit system
* 一个串口模块
+
* A serial communication board
  
===经测试使用的TF卡===
+
===TF Cards We Tested===
制作启动NanoPi Duo2的TF卡时,建议Class10或以上的 8GB SDHC卡。以下是经友善之臂测试验证过的高速TF卡:
+
To make your NanoPi Duo2 boot and run fast we highly recommend you use a Class10 8GB SDHC TF card or a better one. The following cards are what we used in all our test cases presented here:
*SanDisk闪迪 TF 8G Class10 Micro/SD 高速 TF卡:
+
* SanDisk TF 8G Class10 Micro/SD TF card:
 
[[File:SanDisk MicroSD.png|frameless|100px|SanDisk MicroSD 8G]]
 
[[File:SanDisk MicroSD.png|frameless|100px|SanDisk MicroSD 8G]]
*SanDisk闪迪 TF128G 至尊高速MicroSDXC TF 128G Class10 48MB/S:
+
* SanDisk TF128G MicroSDXC TF 128G Class10 48MB/S:
 
[[File:SanDisk MicroSD-01.png|frameless|100px|SanDisk MicroSD 128G]]
 
[[File:SanDisk MicroSD-01.png|frameless|100px|SanDisk MicroSD 128G]]
*川宇 8G手机内存卡 8GTF卡存储卡 C10高速class10 micro SD卡:
+
* 川宇 8G C10 High Speed class10 micro SD card:
 
[[File:SanDisk MicroSD-02.png|frameless|100px|chuanyu MicroSD 8G]]
 
[[File:SanDisk MicroSD-02.png|frameless|100px|chuanyu MicroSD 8G]]
  
===安装系统===
+
===Install OS===
====下载系统固件====
+
====Get Image Files====
首先访问[http://download.friendlyarm.com/nanopiduo2 下载地址]下载需要的固件文件(officail-ROMs目录)和烧写工具(tools目录)<br />
+
Visit this link [http://download.friendlyarm.com/nanopiduo2 download link] to download image files (under the official-ROMs directory) and the flashing utility(under the tools directory):<br />
  
 
::{| class="wikitable"
 
::{| class="wikitable"
 
|-
 
|-
|colspan=2|使用以下固件:
+
|colspan=2|Image Files:
 
|-
 
|-
|nanopi-duo2_sd_friendlycore-xenial_4.14_armhf_YYYYMMDD.img.zip || 基于UbuntuCore构建的FriendlyCore系统固件,使用Linux-4.14内核                    
+
|nanopi-duo2_sd_friendlycore-xenial_4.14_armhf_YYYYMMDD.img.zip || FriendlyCore (base on UbuntuCore) Image File, Kernel: Linux-4.14                    
 
|-
 
|-
|colspan=2|烧写工具: 
+
|nanopi-duo2_sd_openwrt_4.14_armhf_YYYYMMDD.img.zip || OpenWrt, kernel:Linux-4.14
 
|-
 
|-
|win32diskimager.rar || Windows平台下的系统烧写工具,Linux平台下可以用dd命令烧写系统
+
|colspan=2|Flash Utility: 
 +
|-
 +
|win32diskimager.rar || Windows utility for flashing Debian image. Under Linux users can use "dd"
 
|-  
 
|-  
 
|}
 
|}
  
 
{{BurnOS-Allwinner|NanoPi-Duo2}}
 
{{BurnOS-Allwinner|NanoPi-Duo2}}
 +
 +
===Work with NanoPi Duo2 IoT-Box Carrier Board===
 +
FriendlyELEC developed a dedicated carrier board: NanoPi Duo2 IoT-Box. For more details about this carrier board refer to: [http://wiki.friendlyarm.com/wiki/index.php/NanoPi_Duo2_IoT-Box Introduction to NanoPi Duo2 IoT-Box]. How is a hardware setup:<br>
 +
[[File:NanoPi_Duo2_NanoPi Duo2 IoT-Box.jpg|frameless|600px|NanoPi Duo2 IoT-Box_NanoPi_Duo2]]
  
 
{{FriendlyCoreGeneral|NanoPi-Duo2}}
 
{{FriendlyCoreGeneral|NanoPi-Duo2}}
 
{{FriendlyCoreAllwinnerH3|NanoPi-Duo2}}
 
{{FriendlyCoreAllwinnerH3|NanoPi-Duo2}}
  
==如何编译FriendlyCore系统==
+
{{OpenWrt1|NanoPi-Duo2}}
===使用Linux-4.14 BSP===
+
Duo2仅支持使用Linux-4.14内核,关于H3芯片系列开发板使用主线U-boot和Linux-4.14的方法,请参考维基:[[Mainline U-boot & Linux|Mainline U-boot & Linux]] <br>
+
  
==资源链接==
+
==Make Your Own Linux System==
===手册原理图等开发资料===
+
===Make Image Based on Linux-4.14 BSP===
* 原理图: [http://wiki.friendlyarm.com/wiki/images/c/c1/Schematic_NanoPi_Duo2-V1_0-1807.pdf  NanoPi Duo2 V1.0 1807原理图]
+
The NanoPi Duo2 supports the Linux-4.14 kernel which is mainly maintained and supported by open source communities. FriendlyElec ported this kernel to the NanoPi Duo2.<br>
* 尺寸图: [http://wiki.friendlyarm.com/wiki/index.php/File:Dimensions_NanoPi_Duo2_V1.0_1807_PCB.rar  NanoPi Duo2 V1.0 1807 PCB尺寸图]  
+
Here is a reference link to more details about how to make image files for Allwinner H3 based on mainline U-boot and Linux-4.14 kernel:[[Building U-boot and Linux for H5/H3/H2+]] <br>
*  H3芯片手册 [http://wiki.friendlyarm.com/wiki/images/4/4b/Allwinner_H3_Datasheet_V1.2.pdf Allwinner_H3_Datasheet_V1.2.pdf]
+
  
==硬件更新==
+
===Make Image Based on Linux-3.4 BSP===
 +
The Linux3.4 BSP is provided by Allwinner. FriendlyElec ported this to the NanoPi Duo2.<br>
 +
 
 +
====Preparations====
 +
Get lichee source:
 +
<syntaxhighlight lang="bash">
 +
$ git clone https://github.com/friendlyarm/h3_lichee.git lichee --depth 1
 +
</syntaxhighlight>
 +
Note: "lichee" is the project name named by Allwinner for its CPU's source code which contains the source code of U-boot, Linux kernel and various scripts.
 +
 
 +
====Install Cross Compiler====
 +
Visit this site [http://download.friendlyarm.com/nanopim1plus download link], enter the "toolchain" directory, download the cross compiler "gcc-linaro-arm.tar.xz" and copy it to the "lichee/brandy/toochain/" directory.
 +
 
 +
====Compile lichee Source Code====
 +
Compilation of the H3's BSP source code must be done under a PC running a 64-bit Linux.The following cases were tested on Ubuntu-14.04 LTS-64bit:
 +
<syntaxhighlight lang="bash">
 +
$ sudo apt-get install gawk git gnupg flex bison gperf build-essential \
 +
zip curl libc6-dev libncurses5-dev:i386 x11proto-core-dev \
 +
libx11-dev:i386 libreadline6-dev:i386 libgl1-mesa-glx:i386 \
 +
libgl1-mesa-dev g++-multilib mingw32 tofrodos \
 +
python-markdown libxml2-utils xsltproc zlib1g-dev:i386
 +
</syntaxhighlight>
 +
 
 +
Enter the lichee directory and run the following command to compile the whole package:
 +
<syntaxhighlight lang="bash">
 +
$ cd lichee/fa_tools
 +
$ ./build.sh -b nanopi-m1-plus -p linux -t all
 +
</syntaxhighlight>
 +
After this compilation succeeds a u-boot, Linux kernel and kernel modules will be generated<br>
 +
Note: the lichee directory contains a cross-compiler we have setup. When you compile the source code it will automatically call this cross-compiler.
 +
 
 +
====Compile U-boot====
 +
Note:you need to compile the whole lichee directory before you can compile U-boot individually.<br>
 +
You can run the following commands to compile U-boot:
 +
<syntaxhighlight lang="bash">
 +
$ cd lichee/fa_tools/
 +
$ ./build.sh -b nanopi-m1-plus -p linux -t u-boot
 +
</syntaxhighlight>
 +
The gen_script.sh script patches the U-boot with Allwinner features. A U-boot without these features cannot work.<br>
 +
Type the following command to update the U-boot on the MicroSD card:
 +
<syntaxhighlight lang="bash">
 +
$ cd lichee/fa_tools/
 +
$ ./fuse.sh -d /dev/sdX -p linux -t u-boot
 +
</syntaxhighlight>
 +
Note: you need to replace "/dev/sdx" with the device name in your system.
 +
 
 +
====Compile Linux Kernel====
 +
Note:you need to compile the whole lichee directory before you can compile Linux kernel individually.<br>
 +
If you want to compile the Linux kernel run the following command:
 +
<syntaxhighlight lang="bash">
 +
$ cd lichee/fa_tools/
 +
$ ./build.sh -b nanopi-m1-plus -p linux -t kernel
 +
</syntaxhighlight>
 +
After the compilation is done a boot.img and its kernel modules will be generated under "linux-3.4/output".
 +
 
 +
====Clean Source Code====
 +
<syntaxhighlight lang="bash">
 +
$ cd lichee/fa_tools/
 +
$ ./build.sh -b nanopi-m1-plus -p linux -t clean
 +
</syntaxhighlight>
 +
 
 +
{{DeveloperGuildH3|NanoPi-Duo2}}
 +
 
 +
==Resources==
 +
===Datasheets & Schematics===
 +
* Schematic: [http://wiki.friendlyarm.com/wiki/images/c/c1/Schematic_NanoPi_Duo2-V1_0-1807.pdf  NanoPi Duo2 V1.0 1807 Schematic]
 +
* Dimensional Diagram: [http://wiki.friendlyarm.com/wiki/index.php/File:Dimensions_NanoPi_Duo2_V1.0_1807_PCB.rar  NanoPi Duo2 V1.0 1807 PCB Dimensional Diagram]
 +
*  H3's datasheet [http://wiki.friendlyarm.com/wiki/images/4/4b/Allwinner_H3_Datasheet_V1.2.pdf Allwinner_H3_Datasheet_V1.2.pdf]
 +
 
 +
==Hardware Update Versions==
 
===V1.0 1807===
 
===V1.0 1807===
第一版
+
First Version
  
 
{{H3ChangeLog|NanoPi-Duo2}}
 
{{H3ChangeLog|NanoPi-Duo2}}
 +
 +
==Update Log==
 +
===Oct-10-2018===
 +
* Released English Version
 +
 +
===Dec-19-2018===
 +
* Updated Section 6

Revision as of 08:27, 31 July 2019

查看中文

Contents

1 Introduction

Overview
Front
Back
  • The NanoPi Duo2("Duo2") is an ARM board designed and developed by FriendlyELEC for makers and hobbyists. It is only 55 x 25.4mm. It features Allwinner quad-core A7 processor H3, and has 256M/512M DDR3 RAM, onboard WiFi & bluetooth module and an OV5640 camera interface. It works with Linux variants such as Ubuntu Core.
  • The NanoPi Duo2 is tiny and compact with rich interfaces and ports. It takes power input from its MicroUSB port and can be booted from a Micro SD card. It works with general bread-boards. Interface pins such as USB, SPI, UART, I2C, PWM, IR, audio input & output and Fast Ethernet etc are populated.
  • The NanoPi Duo2 supports software utilities such as WiringNP and Python etc. These are all open source. It is suited for various IoT applications.

2 Hardware Spec

  • CPU: Allwinner H3, Quad-core Cortex-A7 Up to 1.2GHz
  • DDR3 RAM: 512M
  • Connectivity: 10/100M Ethernet
  • WiFi: 802.11b/g/n
  • Bluetooth: Bluetooth V4.0 of 1, 2 and 3 Mbps.
  • Camera: OV5640
  • Key: GPIO Key
  • USB Host: 2.54mm pin x2, exposed in 2.54mm pitch pin header
  • MicroSD Slot x 1
  • MicroUSB: OTG and power input
  • Debug Serial Interface: exposed in 2.54mm pitch pin header
  • Audio input/output Interface: exposed in 2.54mm pitch pin header
  • GPIO1: 2.54mm spacing 16pin. It includes UART, SPI, I2C, Audio etc
  • GPIO2: 2.54mm spacing 16pin. It includes USB,10/100M Ethernet, IO etc
  • PCB Dimension: 25.4 x 55mm
  • Power Supply: DC 5V/2A
  • Temperature measuring range: -20℃ to 70℃
  • OS/Software: U-boot,Linux-4.14 / Linux-3.4, Ubuntu 16.04.2 LTS (Xenial)
  • Weight: xxg(With Pin-headers)

3 Diagram, Layout and Dimension

3.1 Layout

NanoPi Duo2 Layout
pinout
  • GPIO Pin Spec
Pin# GPIO1 Name Linux gpio Pin# GPIO2 Name Linux gpio
1 5V VDD_5V 2 RXD DEBUG_RX(UART_RXD0)/GPIOA5/PWM0 5
3 5V VDD_5V 4 TXD DEBUG_TX(UART_TXD0)/GPIOA4 4
5 3V3 SYS_3.3V 6 GND GND
7 GND GND 8 SCL I2C0_SCL/GPIOA11 11
9 IRRX GPIOL11/IR-RX 363 10 SDA I2C0_SDA/GPIOA12 12
11 PG11 GPIOG11 203 12 CS UART3_TX/SPI1_CS/GPIOA13 13
13 DM3 USB-DM3 14 CLK UART3_RX/SPI1_CLK/GPIOA14 14
15 DP3 USB-DP3 16 MISO UART3_CTS/SPI1_MISO/GPIOA16 16
17 DM2 USB-DM2 18 MOSI UART3_RTS/SPI1_MOSI/GPIOA15 15
19 DP2 USB-DP2 20 RX1 UART1_RX/GPIOG7 199
21 RD- EPHY-RXN 22 TX1 UART1_TX/GPIOG6 198
23 RD+ EPHY-RXP 24 CVBS CVBS
25 TD- EPHY-TXN 26 LL LINEOUT_L
27 TD+ EPHY-TXP 28 LR LINEOUT_R
29 LNK EPHY-LED-LINK 30 MP MIC_P
31 SPD EPHY-LED-SPD 32 MN MIC_N
  • Camera(OV5640)Pin Spec
Pin# Name
1 NC1
2 AGND
3 SIO-D
4 AVDD
5 SIO-C
6 RESER
7 VSYNC
8 PWDN
9 HREF
10 DVDD
11 DOVDD
12 Y9/MDP1
13 XCLK
14 Y8/MDN1
15 DGND
16 Y7/MCP
17 PCLK
18 Y6/MCN
19 Y2
20 Y5/MDP0
21 Y3
22 Y4/MDN0
23 AF-VDD
24 NC2


Note
  1. SYS_3.3V: 3.3V power output
  2. VDD_5V: 5V power input/output. When the external device’s power is greater than the MicroUSB's the external device is charging the board otherwise the board powers the external device. The input range is 4.7V ~ 5.5V.
  3. All pins are 3.3V, output current is 5mA.
  4. For more details refer to :NanoPi Duo2 Schematic

3.2 Dimensional Diagram

NanoPi-Duo2-V1.0 1807-dimensions.png

For more details refer to :NanoPi_Duo2_V1.0_1807 pcb in dxf format

4 Get Started

4.1 Essentials You Need

Before starting to use your NanoPi NEO get the following items ready

  • NanoPi Duo2
  • microSD Card/TFCard: Class 10 or Above, minimum 8GB SDHC
  • microUSB power. A 5V/2A power is a must
  • A Host computer running Ubuntu 16.04 64 bit system
  • A serial communication board

4.2 TF Cards We Tested

To make your NanoPi Duo2 boot and run fast we highly recommend you use a Class10 8GB SDHC TF card or a better one. The following cards are what we used in all our test cases presented here:

  • SanDisk TF 8G Class10 Micro/SD TF card:

SanDisk MicroSD 8G

  • SanDisk TF128G MicroSDXC TF 128G Class10 48MB/S:

SanDisk MicroSD 128G

  • 川宇 8G C10 High Speed class10 micro SD card:

chuanyu MicroSD 8G

4.3 Install OS

4.3.1 Get Image Files

Visit this link download link to download image files (under the official-ROMs directory) and the flashing utility(under the tools directory):

Image Files:
nanopi-duo2_sd_friendlycore-xenial_4.14_armhf_YYYYMMDD.img.zip FriendlyCore (base on UbuntuCore) Image File, Kernel: Linux-4.14
nanopi-duo2_sd_openwrt_4.14_armhf_YYYYMMDD.img.zip OpenWrt, kernel:Linux-4.14
Flash Utility:
win32diskimager.rar Windows utility for flashing Debian image. Under Linux users can use "dd"

4.3.2 Linux

4.3.2.1 Flash to TF
  • FriendlyCore / Debian / Ubuntu / OpenWrt / DietPi are all based on a same Linux distribution and their installation methods are the same.
  • Extract the Linux image and win32diskimager.rar files. Insert a TF card(at least 8G) into a Windows PC and run the win32diskimager utility as administrator. On the utility's main window select your TF card's drive, the wanted image file and click on "write" to start flashing the TF card.

Take "nanopi-duo2_sd_friendlycore-xenial_4.14_armhf_YYYYMMDD.img" as an example here is the installation window. Other image files are installed on the similar window:
win32disk-h3

After it is installed you will see the following window:
win32disk-finish

  • Insert this card into your board's BOOT slot and power on (with a 5V/2A power source). If the PWR LED is on and the STAT LED is blinking this indicates your board has successfully booted.

4.4 Work with NanoPi Duo2 IoT-Box Carrier Board

FriendlyELEC developed a dedicated carrier board: NanoPi Duo2 IoT-Box. For more details about this carrier board refer to: Introduction to NanoPi Duo2 IoT-Box. How is a hardware setup:
NanoPi Duo2 IoT-Box_NanoPi_Duo2

5 Work with FriendlyCore

5.1 Introduction

FriendlyCore is a light Linux system without X-windows, based on ubuntu core, It uses the Qt-Embedded's GUI and is popular in industrial and enterprise applications.

Besides the regular Ubuntu Core's features FriendlyCore has the following additional features:

  • it integrates Qt4.8;
  • it integrates NetworkManager;
  • it has bluez and Bluetooth related packages;
  • it has alsa packages;
  • it has npi-config;
  • it has RPiGPIO, a Python GPIO module;
  • it has some Python/C demo in /root/ directory;
  • it enables 512M-swap partition;

5.2 System Login

  • If your board is connected to an HDMI monitor you need to use a USB mouse and keyboard.
  • If you want to do kernel development you need to use a serial communication board, ie a PSU-ONECOM board, which will

You can use a USB to Serial conversion board too.
Make sure you use a 5V/2A power to power your board from its MicroUSB port:
USB2UART-Duo2.jpg

  • FriendlyCore User Accounts:

Non-root User:

   User Name: pi
   Password: pi

Root:

   User Name: root
   Password: fa

The system is automatically logged in as "pi". You can do "sudo npi-config" to disable auto login.

  • Update packages
$ sudo apt-get update

5.3 Configure System with npi-config

The npi-config is a commandline utility which can be used to initialize system configurations such as user password, system language, time zone, Hostname, SSH switch , Auto login and etc. Type the following command to run this utility.

$ sudo npi-config

Here is how npi-config's GUI looks like:
npi-config

5.4 Develop Qt Application

Please refer to: How to Build and Install Qt Application for FriendlyELEC Boards

5.5 Setup Program to AutoRun

You can setup a program to autorun on system boot with npi-config:

sudo npi-config

Go to Boot Options -> Autologin -> Qt/Embedded, select Enable and reboot.

5.6 Extend TF Card's Section

When FriendlyCore is loaded the TF card's section will be automatically extended.You can check the section's size by running the following command:

$ df -h

5.7 Transfer files using Bluetooth

Take the example of transferring files to the mobile phone. First, set your mobile phone Bluetooth to detectable status, then execute the following command to start Bluetooth search.:

hcitool scan


Search results look like:

Scanning ...
    2C:8A:72:1D:46:02   HTC6525LVW

This means that a mobile phone named HTC6525LVW is searched. We write down the MAC address in front of the phone name, and then use the sdptool command to view the Bluetooth service supported by the phone:

sdptool browser 2C:8A:72:1D:46:02

Note: Please replace the MAC address in the above command with the actual Bluetooth MAC address of the mobile phone.
This command will detail the protocols supported by Bluetooth for mobile phones. What we need to care about is a file transfer service called OBEX Object Push. Take the HTC6525LVW mobile phone as an example. The results are as follows:

Service Name: OBEX Object Push
Service RecHandle: 0x1000b
Service Class ID List:
  "OBEX Object Push" (0x1105)
Protocol Descriptor List:
  "L2CAP" (0x0100)
  "RFCOMM" (0x0003)
    Channel: 12
  "OBEX" (0x0008)
Profile Descriptor List:
  "OBEX Object Push" (0x1105)
    Version: 0x0100

As can be seen from the above information, the channel used by the OBEX Object Push service of this mobile phone is 12, we need to pass it to the obexftp command, and finally the command to initiate the file transfer request is as follows:

obexftp --nopath --noconn --uuid none --bluetooth -b 2C:8A:72:1D:46:02 -B 12 -put example.jpg

Note: Please replace the MAC address, channel and file name in the above command with the actual one.

After executing the above commands, please pay attention to the screen of the mobile phone. The mobile phone will pop up a prompt for pairing and receiving files. After confirming, the file transfer will start.

Bluetooth FAQ:
1) Bluetooth device not found on the development board, try to open Bluetooth with the following command:

rfkill unblock 0

2) Prompt can not find the relevant command, you can try to install related software with the following command:

apt-get install bluetooth bluez obexftp openobex-apps python-gobject ussp-push

5.8 WiFi

For either an SD WiFi or a USB WiFi you can connect it to your board in the same way. The APXX series WiFi chips are SD WiFi chips. By default FriendlyElec's system supports most popular USB WiFi modules. Here is a list of the USB WiFi modules we tested:

Index Model
1 RTL8188CUS/8188EU 802.11n WLAN Adapter
2 RT2070 Wireless Adapter
3 RT2870/RT3070 Wireless Adapter
4 RTL8192CU Wireless Adapter
5 mi WiFi mt7601

You can use the NetworkManager utility to manage network. You can run "nmcli" in the commandline utility to start it. Here are the commands to start a WiFi connection:

  • Change to root
$ su root
  • Check device list
$ nmcli dev

Note: if the status of a device is "unmanaged" it means that device cannot be accessed by NetworkManager. To make it accessed you need to clear the settings under "/etc/network/interfaces" and reboot your system.

  • Start WiFi
$ nmcli r wifi on
  • Scan Surrounding WiFi Sources
$ nmcli dev wifi
  • Connect to a WiFi Source
$ nmcli dev wifi connect "SSID" password "PASSWORD" ifname wlan0

The "SSID" and "PASSWORD" need to be replaced with your actual SSID and password.If you have multiple WiFi devices you need to specify the one you want to connect to a WiFi source with iface
If a connection succeeds it will be automatically setup on next system reboot.

For more details about NetworkManager refer to this link: Use NetworkManager to configure network settings

If your USB WiFi module doesn't work most likely your system doesn't have its driver. For a Debian system you can get a driver from Debian-WiFi and install it on your system. For a Ubuntu system you can install a driver by running the following commands:

$ apt-get install linux-firmware

In general all WiFi drivers are located at the "/lib/firmware" directory.

5.9 Setup Wi-Fi Hotspot

Run the following command to enter AP mode:

$ su root
$ turn-wifi-into-apmode yes

You will be prompted to type your WiFi hotspot's name and password and then proceed with default prompts.
After this is done you will be able to find this hotspot in a neadby cell phone or PC. You can login to this board at 192.168.8.1:

$ ssh root@192.168.8.1

When asked to type a password you can type "fa".

To speed up your ssh login you can turn off your wifi by running the following command:

$ iwconfig wlan0 power off

To switch back to Station mode run the following command:

$ turn-wifi-into-apmode no

5.10 Bluetooth

Search for surrounding bluetooth devices by running the following command:

$ su root
$ hciconfig hci0 up
$ hcitool scan

You can run "hciconfig" to check bluetooth's status.

5.11 Ethernet Connection

If a board is connected to a network via Ethernet before it is powered on it will automatically obtain an IP with DHCP activated after it is powered up. If you want to set up a static IP refer to: Use NetworkManager to configure network settings

5.12 WiringPi and Python Wrapper

5.13 Set Audio Device

If your system has multiple audio devices such as HDMI-Audio, 3.5mm audio jack and I2S-Codec you can set system's default audio device by running the following commands.

  • After your board is booted run the following commands to install alsa packages:
$ apt-get update
$ apt-get install libasound2
$ apt-get install alsa-base
$ apt-get install alsa-utils
  • After installation is done you can list all the audio devices by running the following command. Here is a similar list you may see after you run the command:
$ aplay -l
card 0: HDMI
card 1: 3.5mm codec
card 2: I2S codec

"card 0" is HDMI-Audio, "card 1" is 3.5mm audio jack and "card 2" is I2S-Codec. You can set default audio device to HDMI-Audio by changing the "/etc/asound.conf" file as follows:

pcm.!default {
    type hw
    card 0
    device 0
}
 
ctl.!default {
    type hw
    card 0
}

If you change "card 0" to "card 1" the 3.5mm audio jack will be set to the default device.
Copy a .wav file to your board and test it by running the following command:

$ aplay /root/Music/test.wav

You will hear sounds from system's default audio device.
If you are using H3/H5/H2+ series board with mainline kernel, the easier way is using npi-config

5.14 Connect to DVP Camera OV5640

For NanoPi-Duo2 the OV5640 can work with Linux-4.14 Kernel.
The NanoPi-Duo2 has support for OV5640 cameras and you can directly connect an OV5640 camera to the board. Here is a hardware setup:
duo2-ov5640

connect your board to camera module. Then boot OS, connect your board to a network, log into the board as root and run "mjpg-streamer":

$ cd /root/C/mjpg-streamer
$ make
$ ./start.sh

You need to change the start.sh script and make sure it uses a correct /dev/videoX node. You can check your camera's node by running the following commands:

$ apt-get install v4l-utils
$ v4l2-ctl -d /dev/video0 -D
Driver Info (not using libv4l2):
        Driver name   : sun6i-video
        Card type     : sun6i-csi
        Bus info      : platform:camera
        Driver version: 4.14.0
	...

The above messages indicate that "/dev/video0" is camera's device node.The mjpg-streamer application is an open source video steam server. After it is successfully started the following messages will be popped up:

 
$ ./start.sh
 i: Using V4L2 device.: /dev/video0
 i: Desired Resolution: 1280 x 720
 i: Frames Per Second.: 30
 i: Format............: YUV
 i: JPEG Quality......: 90
 o: www-folder-path...: ./www/
 o: HTTP TCP port.....: 8080
 o: username:password.: disabled
 o: commands..........: enabled

start.sh runs the following two commands:

export LD_LIBRARY_PATH="$(pwd)"
./mjpg_streamer -i "./input_uvc.so -d /dev/video0 -y 1 -r 1280x720 -f 30 -q 90 -n -fb 0" -o "./output_http.so -w ./www"

Here are some details for mjpg_streamer's major options:
-i: input device. For example "input_uvc.so" means it takes input from a camera;
-o: output device. For example "output_http.so" means the it transmits data via http;
-d: input device's subparameter. It defines a camera's device node;
-y: input device's subparameter. It defines a camera's data format: 1:yuyv, 2:yvyu, 3:uyvy 4:vyuy. If this option isn't defined MJPEG will be set as the data format;
-r: input device's subparameter. It defines a camera's resolution;
-f: input device's subparameter. It defines a camera's fps. But whether this fps is supported depends on its driver;
-q: input device's subparameter. It defines the quality of an image generated by libjpeg soft-encoding;
-n: input device's subparameter. It disables the dynctrls function;
-fb: input device's subparameter. It specifies whether an input image is displayed at "/dev/fbX";
-w: output device's subparameter. It defines a directory to hold web pages;

In our case the board's IP address was 192.168.1.230. We typed 192.168.1.230:8080 in a browser and were able to view the images taken from the camera's. Here is what you would expect to observe:
mjpg-streamer-cam500a
The mjpg-streamer utility uses libjpeg to software-encode steam data. The Linux-4.14 based ROM currently doesn't support hardware-encoding. If you use a H3 boards with Linux-3.4 based ROM you can use the ffmpeg utility to hardware-encode stream data and this can greatly release CPU's resources and speed up encoding:

$ ffmpeg -t 30 -f v4l2 -channel 0 -video_size 1280x720 -i /dev/video0 -pix_fmt nv12 -r 30 \
        -b:v 64k -c:v cedrus264 test.mp4

By default it records a 30-second video. Typing "q" stops video recording. After recording is stopped a test.mp4 file will be generated.

5.15 Connect to USB Camera(FA-CAM202)

The FA-CAM202 is a 200M USB camera. Connect your board to camera module. Then boot OS, connect your board to a network, log into the board as root and run "mjpg-streamer":

$ cd /root/C/mjpg-streamer
$ make
$ ./start.sh

You need to change the start.sh script and make sure it uses a correct /dev/videoX node. You can check your camera's node by running the following commands:

$ apt-get install v4l-utils
$ v4l2-ctl -d /dev/video0 -D
Driver Info (not using libv4l2):
        Driver name   : uvcvideo
        Card type     : HC 3358+2100: HC 3358+2100  / USB 2.0 Camera: USB 2.0 Camera
        Bus info      : usb-1c1b000.usb-1
	...

The above messages indicate that "/dev/video0" is camera's device node.The mjpg-streamer application is an open source video steam server. After it is successfully started the following messages will be popped up:

 
$ ./start.sh
 i: Using V4L2 device.: /dev/video0
 i: Desired Resolution: 1280 x 720
 i: Frames Per Second.: 30
 i: Format............: YUV
 i: JPEG Quality......: 90
 o: www-folder-path...: ./www/
 o: HTTP TCP port.....: 8080
 o: username:password.: disabled
 o: commands..........: enabled

start.sh runs the following two commands:

export LD_LIBRARY_PATH="$(pwd)"
./mjpg_streamer -i "./input_uvc.so -d /dev/video0 -y 1 -r 1280x720 -f 30 -q 90 -n -fb 0" -o "./output_http.so -w ./www"

Here are some details for mjpg_streamer's major options:
-i: input device. For example "input_uvc.so" means it takes input from a camera;
-o: output device. For example "output_http.so" means the it transmits data via http;
-d: input device's subparameter. It defines a camera's device node;
-y: input device's subparameter. It defines a camera's data format: 1:yuyv, 2:yvyu, 3:uyvy 4:vyuy. If this option isn't defined MJPEG will be set as the data format;
-r: input device's subparameter. It defines a camera's resolution;
-f: input device's subparameter. It defines a camera's fps. But whether this fps is supported depends on its driver;
-q: input device's subparameter. It defines the quality of an image generated by libjpeg soft-encoding;
-n: input device's subparameter. It disables the dynctrls function;
-fb: input device's subparameter. It specifies whether an input image is displayed at "/dev/fbX";
-w: output device's subparameter. It defines a directory to hold web pages;

In our case the board's IP address was 192.168.1.230. We typed 192.168.1.230:8080 in a browser and were able to view the images taken from the camera's. Here is what you would expect to observe:
mjpg-streamer-cam500a

5.16 Check CPU's Working Temperature

You can get CPU's working temperature by running the following command:

$ cpu_freq 
Aavailable frequency(KHz):
        480000 624000 816000 1008000
Current frequency(KHz):
        CPU0 online=1 temp=26548C governor=ondemand freq=624000KHz
        CPU1 online=1 temp=26548C governor=ondemand freq=624000KHz
        CPU2 online=1 temp=26548C governor=ondemand freq=624000KHz
        CPU3 online=1 temp=26548C governor=ondemand freq=624000KHz

This message means there are currently four CPUs working. All of their working temperature is 26.5 degree in Celsius and each one's clock is 624MHz.
Set CPU frequency:

$ cpu_freq -s 1008000
Aavailable frequency(KHz):
        480000 624000 816000 1008000
Current frequency(KHz):
        CPU0 online=1 temp=36702C governor=userspace freq=1008000KHz
        CPU1 online=1 temp=36702C governor=userspace freq=1008000KHz
        CPU2 online=1 temp=36702C governor=userspace freq=1008000KHz
        CPU3 online=1 temp=36702C governor=userspace freq=1008000KHz


5.17 Test Infrared Receiver

Note: Please Check your board if IR receiver exist.
By default the infrared function is disabled you can enable it by using the npi-config utility:

$ npi-config
    6 Advanced Options     Configure advanced settings
        A8 IR              Enable/Disable IR
            ir Enable/Disable ir[enabled]

Reboot your system and test its infrared function by running the following commands:

$ apt-get install ir-keytable
$ echo "+rc-5 +nec +rc-6 +jvc +sony +rc-5-sz +sanyo +sharp +mce_kbd +xmp" > /sys/class/rc/rc0/protocols   # Enable infrared
$ ir-keytable -t
Testing events. Please, press CTRL-C to abort.

"ir-keytable -t" is used to check whether the receiver receives infrared signals. You can use a remote control to send infrared signals to the receiver. If it works you will see similar messages as follows:

1522404275.767215: event type EV_MSC(0x04): scancode = 0xe0e43
1522404275.767215: event type EV_SYN(0x00).
1522404278.911267: event type EV_MSC(0x04): scancode = 0xe0e42
1522404278.911267: event type EV_SYN(0x00).


5.18 How to install and use docker (for armhf system)

5.18.1 How to Install Docker

Run the following commands:

sudo apt-get update
sudo apt-get install docker.io

5.18.2 Test Docker installation

Test that your installation works by running the simple docker image:

git clone https://github.com/friendlyarm/debian-jessie-arm-docker
cd debian-jessie-arm-docker
./rebuild-image.sh
./run.sh

5.19 Using 4G Module EC20 on FriendlyCore

5.19.1 Step1:Compile the quectel-CM command line tool on the development board

Compile and install quectel-CM into the /usr/bin/ directory by entering the following command:

git clone https://github.com/friendlyarm/quectel-cm.git
cd quectel-cm/
make
cp quectel-CM /usr/bin/

5.19.2 Step2:Add udhcpc script

The quectel-CM tool will call the udhcpc script. we need to create a udhcpc script for it. Please create a new file with the editor you are familiar with. The file name is: /usr/share/udhcpc/default.script, the content is as follows:

#!/bin/sh
 
# udhcpc script edited by Tim Riker <Tim@Rikers.org>
 
[ -z "$1" ] && echo "Error: should be called from udhcpc" && exit 1
 
RESOLV_CONF="/etc/resolv.conf"
[ -n "$broadcast" ] && BROADCAST="broadcast $broadcast"
[ -n "$subnet" ] && NETMASK="netmask $subnet"
 
case "$1" in
  deconfig)
    /sbin/ifconfig $interface 0.0.0.0
    ;;
 
  renew|bound)
    /sbin/ifconfig $interface $ip $BROADCAST $NETMASK
 
    if [ -n "$router" ] ; then
      echo "deleting routers"
      while route del default gw 0.0.0.0 dev $interface ; do
        :
      done
 
      for i in $router ; do
        route add default gw $i dev $interface
      done
    fi
 
    echo -n > $RESOLV_CONF
    [ -n "$domain" ] && echo search $domain >> $RESOLV_CONF
    for i in $dns ; do
      echo adding dns $i
      echo nameserver $i >> $RESOLV_CONF
    done
    ;;
esac
 
exit 0

Assign executable permissions with the following command:

chmod 755 /usr/share/udhcpc/default.script

5.19.3 Step3:Start 4G dialing

Start the dialing by entering the following command:

quectel-CM &

If the dialing is successful, the screen will output information such as the IP address, as shown below:

root@NanoPC-T4:~# quectel-CM &
[1] 5364
root@NanoPC-T4:~# [05-15_08:23:13:719] WCDMA&LTE_QConnectManager_Linux&Android_V1.1.34
[05-15_08:23:13:720] quectel-CM profile[1] = (null)/(null)/(null)/0, pincode = (null)
[05-15_08:23:13:721] Find /sys/bus/usb/devices/3-1 idVendor=2c7c idProduct=0125
[05-15_08:23:13:722] Find /sys/bus/usb/devices/3-1:1.4/net/wwan0
[05-15_08:23:13:722] Find usbnet_adapter = wwan0
[05-15_08:23:13:723] Find /sys/bus/usb/devices/3-1:1.4/usbmisc/cdc-wdm0
[05-15_08:23:13:723] Find qmichannel = /dev/cdc-wdm0
[05-15_08:23:13:739] cdc_wdm_fd = 7
[05-15_08:23:13:819] Get clientWDS = 18
[05-15_08:23:13:851] Get clientDMS = 2
[05-15_08:23:13:884] Get clientNAS = 2
[05-15_08:23:13:915] Get clientUIM = 1
[05-15_08:23:13:947] Get clientWDA = 1
[05-15_08:23:13:979] requestBaseBandVersion EC20CEFHLGR06A01M1G_OCPU_BETA1210
[05-15_08:23:14:043] requestSetEthMode QMUXResult = 0x1, QMUXError = 0x46
[05-15_08:23:14:075] requestGetSIMStatus SIMStatus: SIM_READY
[05-15_08:23:14:107] requestGetProfile[1] cmnet///0
[05-15_08:23:14:139] requestRegistrationState2 MCC: 460, MNC: 0, PS: Attached, DataCap: LTE
[05-15_08:23:14:171] requestQueryDataCall IPv4ConnectionStatus: DISCONNECTED
[05-15_08:23:14:235] requestRegistrationState2 MCC: 460, MNC: 0, PS: Attached, DataCap: LTE
[05-15_08:23:14:938] requestSetupDataCall WdsConnectionIPv4Handle: 0xe16e4540
[05-15_08:23:15:002] requestQueryDataCall IPv4ConnectionStatus: CONNECTED
[05-15_08:23:15:036] ifconfig wwan0 up
[05-15_08:23:15:052] busybox udhcpc -f -n -q -t 5 -i wwan0
[05-15_08:23:15:062] udhcpc (v1.23.2) started
[05-15_08:23:15:077] Sending discover...
[05-15_08:23:15:093] Sending select for 10.22.195.252...
[05-15_08:23:15:105] Lease of 10.22.195.252 obtained, lease time 7200
[05-15_08:23:15:118] deleting routers
SIOCDELRT: No such process
[05-15_08:23:15:132] adding dns 221.179.38.7
[05-15_08:23:15:132] adding dns 120.196.165.7

5.19.4 Test 4G connection

Ping a domain name to see if DNS resolution is already working:

root@NanoPC-T4:~# ping www.baidu.com
PING www.a.shifen.com (183.232.231.174) 56(84) bytes of data.
64 bytes from 183.232.231.174 (183.232.231.174): icmp_seq=1 ttl=56 time=74.3 ms
64 bytes from 183.232.231.174 (183.232.231.174): icmp_seq=2 ttl=56 time=25.1 ms
64 bytes from 183.232.231.174 (183.232.231.174): icmp_seq=3 ttl=56 time=30.8 ms
64 bytes from 183.232.231.174 (183.232.231.174): icmp_seq=4 ttl=56 time=29.1 ms
64 bytes from 183.232.231.174 (183.232.231.174): icmp_seq=5 ttl=56 time=29.2 ms

5.19.5 Test the speed of 4G

wget -O - https://raw.githubusercontent.com/sivel/speedtest-cli/master/speedtest.py | python

The test results obtained are as follows:

Retrieving speedtest.net configuration...
Testing from China Mobile Guangdong (117.136.40.167)...
Retrieving speedtest.net server list...
Selecting best server based on ping...
Hosted by ChinaTelecom-GZ (Guangzhou) [2.51 km]: 62.726 ms
Testing download speed................................................................................
Download: 32.93 Mbit/s
Testing upload speed................................................................................................
Upload: 5.58 Mbit/s

6 Work with OpenWrt

6.1 Introduction

OpenWrt is a highly extensible GNU/Linux distribution for embedded devices.Unlike many other distributions for routers, OpenWrt is built from the ground up to be a full-featured, easily modifiable operating system for embedded devices. In practice, this means that you can have all the features you need with none of the bloat, powered by a modern Linux kernel. For more details you can refer to:OpenWrt Website.

6.2 System Login

  • Login via Serial Port

When you do kernel development you'd better get a serial communication board. After you connect your board to a serial communication board you will be able to do development work from a commandline utility.


or you can use a USB to serial board and power on the whole system at the MicroUSB port with a 5V/2A power:
USB2UART-Duo2.jpg

By default you will login as root without a password. You can use "passwd" to set a password for root.
op_login
On first boot the system will automatically extend the file system on the TF card to the max capacity:
resize_rootfs_userdata
Please wait for this to be done.

  • Login via SSH

By default in FriendlyElec's OpenWrt system the WiFi AP hotspot's name is like "OpenWrt-10:d0:7a:de:3d:92" and the network segment is 192.168.2.x. You can connect your device to it and login with SSH without a password by running the following command:

$ ssh root@192.168.2.1

You can login without a password.

  • Login via Web

You can login OpenWrt via a LuCI Web page.
After you go through all the steps in <Login via SSH> and get an IP address e.g. 192.168.2.1 for the Ethernet connection, type this IP address in a browser's address bar and you will be able to login OpenWrt-LuCI:
OpenWrt-LuCI_wlan0
By default you will login as root without a password, just click on "Login" to login.

6.3 Manage Software Packages

OpenWrt has a package management utility: opkg. You can get its details by running the following command:

$ opkg
Package Manipulation:
        update                  Update list of available packages
        upgrade <pkgs>          Upgrade packages
        install <pkgs>          Install package(s)
        configure <pkgs>        Configure unpacked package(s)
        remove <pkgs|regexp>    Remove package(s)
        flag <flag> <pkgs>      Flag package(s)
         <flag>=hold|noprune|user|ok|installed|unpacked (one per invocation)
 
Informational Commands:
        list                    List available packages
        list-installed          List installed packages
        list-upgradable         List installed and upgradable packages
        list-changed-conffiles  List user modified configuration files
        files <pkg>             List files belonging to <pkg>
        search <file|regexp>    List package providing <file>
        find <regexp>           List packages whose name or description matches <regexp>
        info [pkg|regexp]       Display all info for <pkg>
        status [pkg|regexp]     Display all status for <pkg>
        download <pkg>          Download <pkg> to current directory
...

These are just part of the manual. Here are some popular opkg commands.

  • Update Package List

Before you install a package you'd better update the package list:

$ opkg update
  • Check Available Packages
$ opkg list

At the time of writing there are 3241 packages available.

  • Check Installed Packages:
$ opkg list-installed

At the time of writing 124 packages have been installed.

  • Install/Delete Packages:
$ opkg install <pkgs>
$ opkg remove <pkgs>
  • Check Files Contained in Installed Packages:
$ opkg files <pkg>
  • Install Chinese Language Package for LuCI
$ opkg install luci-i18n-base-zh-cn
  • Check Changed Files:
$ opkg list-changed-conffiles

6.4 Check System Status

  • Check CPU Temperature & Frequency via Commandline
$ cpu_freq 
Aavailable frequency(KHz):
        480000 624000 816000 1008000
Current frequency(KHz):
        CPU0 online=1 temp=26548C governor=ondemand freq=624000KHz
        CPU1 online=1 temp=26548C governor=ondemand freq=624000KHz
        CPU2 online=1 temp=26548C governor=ondemand freq=624000KHz
        CPU3 online=1 temp=26548C governor=ondemand freq=624000KHz

These messages mean that there are four CPU cores working online simultaneously. Each core's temperature is 26.5 degrees in Celsius, the scheduling policy is on-demand and the working frequency is 624MHz. You can set the frequency by running the following command:

$ cpu_freq -s 1008000
Aavailable frequency(KHz):
        480000 624000 816000 1008000
Current frequency(KHz):
        CPU0 online=1 temp=36702C governor=userspace freq=1008000KHz
        CPU1 online=1 temp=36702C governor=userspace freq=1008000KHz
        CPU2 online=1 temp=36702C governor=userspace freq=1008000KHz
        CPU3 online=1 temp=36702C governor=userspace freq=1008000KHz

These messages mean four CPU cores are working online. Each core's temperature is 26.5 degrees. Each core's governor is on demand and the frequency is 480 MHz.

  • Check System Status on OpenWrt-LuCI Web Page

After open the OpenWrt-LuCI page, go to "Statistics ---> Graphs" and you will see various system statistics e.g.:
1) System Load:
statistics_system_load
2) RAM:
statistics_memory
3) CPU Temperature:
statistics_thermal
All the statistics listed on the Statistics page are presented by the luci-app-statistics package which uses the Collectd utility to collect data and presents them with the RRDtool utility.
If you want to get more statistics you can install other collectd-mod-* packages. All collectd-mod-* packages use the same configuration file: /etc/config/luci_statistics.

6.5 Check Network->Interfaces Configurations

  • After open the OpenWrt-LuCI page, go to "Network" ---> "Interfaces" and you will see the current network's configurations:

op_interface_eth0_br

  • All the configurations listed on the Network->Interfaces page are stored in the "/etc/config/network" file.

6.6 Check Netwrok->Wireless Configurations

  • After open the OpenWrt-LuCI page, go to Network ---> Wireless and you will see the WiFi hotspot's configurations:

op_wireless
A default WiFi AP's hotspot name looks like "OpenWrt-10:d0:7a:de:3d:92". It doesn't have a password. You can connect your smart phone to it and browse the internet.

  • All the configurations listed on the Network->Wireless page are stored in the "/etc/config/wireless" file.



7 Make Your Own Linux System

7.1 Make Image Based on Linux-4.14 BSP

The NanoPi Duo2 supports the Linux-4.14 kernel which is mainly maintained and supported by open source communities. FriendlyElec ported this kernel to the NanoPi Duo2.
Here is a reference link to more details about how to make image files for Allwinner H3 based on mainline U-boot and Linux-4.14 kernel:Building U-boot and Linux for H5/H3/H2+

7.2 Make Image Based on Linux-3.4 BSP

The Linux3.4 BSP is provided by Allwinner. FriendlyElec ported this to the NanoPi Duo2.

7.2.1 Preparations

Get lichee source:

$ git clone https://github.com/friendlyarm/h3_lichee.git lichee --depth 1

Note: "lichee" is the project name named by Allwinner for its CPU's source code which contains the source code of U-boot, Linux kernel and various scripts.

7.2.2 Install Cross Compiler

Visit this site download link, enter the "toolchain" directory, download the cross compiler "gcc-linaro-arm.tar.xz" and copy it to the "lichee/brandy/toochain/" directory.

7.2.3 Compile lichee Source Code

Compilation of the H3's BSP source code must be done under a PC running a 64-bit Linux.The following cases were tested on Ubuntu-14.04 LTS-64bit:

$ sudo apt-get install gawk git gnupg flex bison gperf build-essential \
zip curl libc6-dev libncurses5-dev:i386 x11proto-core-dev \
libx11-dev:i386 libreadline6-dev:i386 libgl1-mesa-glx:i386 \
libgl1-mesa-dev g++-multilib mingw32 tofrodos \
python-markdown libxml2-utils xsltproc zlib1g-dev:i386

Enter the lichee directory and run the following command to compile the whole package:

$ cd lichee/fa_tools
$ ./build.sh -b nanopi-m1-plus -p linux -t all

After this compilation succeeds a u-boot, Linux kernel and kernel modules will be generated
Note: the lichee directory contains a cross-compiler we have setup. When you compile the source code it will automatically call this cross-compiler.

7.2.4 Compile U-boot

Note:you need to compile the whole lichee directory before you can compile U-boot individually.
You can run the following commands to compile U-boot:

$ cd lichee/fa_tools/
$ ./build.sh -b nanopi-m1-plus -p linux -t u-boot

The gen_script.sh script patches the U-boot with Allwinner features. A U-boot without these features cannot work.
Type the following command to update the U-boot on the MicroSD card:

$ cd lichee/fa_tools/
$ ./fuse.sh -d /dev/sdX -p linux -t u-boot

Note: you need to replace "/dev/sdx" with the device name in your system.

7.2.5 Compile Linux Kernel

Note:you need to compile the whole lichee directory before you can compile Linux kernel individually.
If you want to compile the Linux kernel run the following command:

$ cd lichee/fa_tools/
$ ./build.sh -b nanopi-m1-plus -p linux -t kernel

After the compilation is done a boot.img and its kernel modules will be generated under "linux-3.4/output".

7.2.6 Clean Source Code

$ cd lichee/fa_tools/
$ ./build.sh -b nanopi-m1-plus -p linux -t clean

8 Developer Guide

8.1 Linux 4.14 BSP

8.2 Linux 3.4 BSP

  • Allwinner's document is located at DVD/doc/allwinner-h3-doc.zip,download

8.3 OpenWrt

8.4 ROM

8.5 Hardware access

9 Resources

9.1 Datasheets & Schematics

10 Hardware Update Versions

10.1 V1.0 1807

First Version


11 Update Log

11.1 Oct-10-2018

  • Released English Version

11.2 Dec-19-2018

  • Updated Section 6