From FriendlyARM WiKi
Jump to: navigation, search




The NanoPi is a low power consumption, Samsung S3C2451 based ARM SOC that FriendlyARM developed for Linux hackers, makers and hobbyists. Its size is only half of the Raspberry Pi(RPi) and its GPIO pin is compatible with the RPi’s. The NanoPi integrates both the WiFi and Bluetooth 4.0. It has a DVP camera interface and full color LCD interface. It boots Linux/Debian quickly from a TF card. These features make it a good platform for applications in IOT, unmanned vehicles, robotics, image processing and human machine interaction.

Hardware Features

  • CPU: Samsung S3C2451, 400Mhz
  • RAM: 64M DDR2
  • Integrated SDIO WiFi and Bluetooth
  • USB Type A x1
  • Debugging Serial Port x1
  • microSD Slot x1
  • microUSB x1: for power and data transmission. It can be configured as a serial port or Ethernet
  • LCD Interface: 0.5 mm pitch SMT FPC seat, for full-color LCD (RGB: 8-8-8)
  • DVP Camera interface:0.5mm spacing FPC socket. It includes ITU-R BT 601/656 8-bit, I2C and IO
  • GPIO1: 2.54mm spacing 40pin, compatible with Raspberry Pi's GPIO. It includes UART, SPI, I2C, IO etc
  • GPIO2: 2.54mm spacing 12pin. It includes I2S, I2C, UART etc.
  • PCB dimension: 75 x 30 mm
  • Power: DC 5V
  • Bootloader and OS: u-boot, Linux-4.1, Debian8 jessie, Rabbit linux

Diagram, Layout and Dimension


NanoPi Layout
  • GPIO1 Pin Spec
NanoPi GPIO Header
  • GPIO2 Pin Spec
Pin# Name Pin# Name
1 VDD_5V 2 VDD_SYS_3.3V
3 TXD2 4 RXD2
5 SDA0 6 SCL0
  • Debug Port CON1(UART0)
Pin# Name
2 VDD_5V
3 TXD0
4 RXD0
  • DVP Camera IF Pin Spec
Pin# Name
1, 2 VDD_SYS_3.3V
7,9,13,15,24 DGND
3 SCL0
4 SDA0
5 GPH13
6 GPJ12
10 NC
16-23 Data bit7-0
  • RGB LCD IF Pin Spec
Pin# Name
1, 2 VDD_5V
11,20,29 DGND
3-10 Blue LSB to MSB
12-19 Green LSB to MSB
21-28 Red LSB to MSB
30 GPG12
31 GPG2
37,38,39,40 XM,XP,YM,YP
  1. VDD_SYS_3.3V: 3.3V power output
  2. VDD_5V: 5V power input/output. When the external device’s power is greater than the MicroUSB’s the external device is charging the board otherwise the board powers the external device. The input range is 4.7V ~ 5.6V
  3. 3. For more details please refer to the document:NanoPi-1507-Schematic.pdf

Board Dimension

NanoPi 机械尺寸

For more details please refer to the document:NanoPi-1507-Dimesions(dxf).zip

Get Started

Essentials You Need

Before play with your NanoPi please get the following items ready

  • NanoPi
  • Class 8, microSD card/TF card: >= 4GB
  • microUSB cable
  • a Host running Ubuntu and connected to the internet

Make an Installation MicroSD Card

  • 1) Insert your microSD card to your host running Ubuntu and check your SD card's device name
dmesg | tail

Search the messages output by "dmesg" for similar words like "sdc: sdc1 sdc2". If you can find them it means your SD card is recognized as "/dev/sdc". Or you can check that by commanding "cat /proc/partitions".

  • 2) Flash Firmware to MicroSD Card
git clone
cd sd-fuse_nanopi
./ /dev/sdx

(Note: you need to replace "/dev/sdx" with the device name in your system)

If you cannot get these files from github you can get them from our source: [1].
If you have problems with using the "" script you can download our "" and use it to make your SD card in Windows. Here is the download:[2].

Run System

Insert this MicroSD card to your NanoPi, connect it to a PC via a MicroUSB cable the NanoPi will be automatically powered on. If you can see the blue LED flashing it means your board is running now. By default we install Debian. It would be better if you connect your NanoPi to an LCD since this helps you set up your NanoPi more easily and conveniently.

Debian8 Jessie

Log on NanoPi via MicroUSB

After connecting your NanoPi to you PC host (running Ubuntu) please type "dmesg" in your PC's command line. If you can find the following messages it means your NanoPi is correctly connected to your host and runs well:

[12601.100339] usb 2-1.7: Product: FriendlyARM Gadget v2.4
[12601.100343] usb 2-1.7: Manufacturer: Linux 4.1.2-FriendlyARM with s3c-hsudc
[12601.103192] cdc_acm 2-1.7:2.0: This device cannot do calls on its own. It is not a modem.
[12601.103368] cdc_acm 2-1.7:2.0: ttyACM0: USB ACM device
[12601.105300] cdc_ether 2-1.7:2.2 usb0: register 'cdc_ether' at usb-0000:00:1d.0-1.7, CDC Ethernet Device, 46:a1:e7:6d:5c:32

If you command "ifconfig" and find a "usb0" device you can SSH to to log on your NanoPi:

ssh root@

After it prompts you to input your password you can try "fa"

Setup Wi-Fi

After SSH to your NanoPi please check the WiFi interface first. The "wlan" device is WiFi.

ifconfig -a

By default the WiFi device is "wlan0". You need to create a configuration file under "/etc/network/interfaces.d/" for WiFi:

vi /etc/network/interfaces.d/wlan0

Here is a sample wlan0 file:

auto lo
iface lo inet loopback
auto wlan0
iface wlan0 inet dhcp
wpa-driver wext
wpa-ssid YourWiFiESSID
wpa-ap-scan 1
wpa-proto RSN
wpa-pairwise CCMP
wpa-group CCMP
wpa-key-mgmt WPA-PSK
wpa-psk YourWiFiPassword

Please replace "YourWiFiESSID" and "YourWiFiPassword" with your WiFiESSID and password. After save and close the file you can connect to your WiFi source by running the following command:

/etc/init.d/networking restart

After you power on your board it will automatically connect to your WiFi source.
Please note that if you use one TF card to boot multiple boards the WiFi device name will likely be named to "wlan1", "wlan2" and etc. You can reset it to "wlan0" by deleting the contents of the following file and reboot your board: /etc/udev/rules.d/70-persistent-net.rules

SSH connected to NanoPi over WiFi

Setup Wi-Fi AP

By default a NanoPi is set to a WiFi AP. The default AP name is "nanopi-wifiap" and the password is "123456789".

The WiFi's working mode can be checked by running the following command:

cat /sys/module/bcmdhd/parameters/op_mode

If the result is "2" it means it is currently working as a WiFi AP.

If the board is not working as a WiFi AP you can set it by running the following commands:

turn-wifi-into-apmode yes

The WiFi AP's name and password can be configured by editing the file "/etc/hostapd/hostapd.conf".


In our Debian Jessie we include bluetooth packages: bluetooth, bluez, obexftp and etc
We will show how to transfer files between a NanoPi and a cellphone

In this example we used an MX4 cellphone, enabled its bluetooth and made it searchable by other devices. Firstly we typed the following commands in the NanoPi to search its nearby bluetooth devices:

hcitool scan

Scanning ...
8C:BE:BE:C5:2C:C7 MX4

The listed search result above indicated that our MX4 phone was found and its MAC was 8C:BE:BE:C5:2C:C7. We ran "sdptool" to list all the protocols it supported:

sdptool browse 8C:BE:BE:C5:2C:C7

What we would like to test was its file transfer function therefore we must find out whether "OBEX File Transfer" was supported:

Service Name: OBEX File Transfer
Service RecHandle: 0x1000c
Service Class ID List:
"OBEX File Transfer" (0x1106)
Protocol Descriptor List:
"L2CAP" (0x0100)
"RFCOMM" (0x0003)
Channel: 11
"OBEX" (0x0008)
Language Base Attr List:
code_ISO639: 0x454e
encoding: 0x6a
base_offset: 0x100
Profile Descriptor List:
"OBEX File Transfer" (0x1106)
Version: 0x0100

Here we found out that "OBEX File Transfer" was supported and we could use "obexftp" to start our file transfers. The following commands listed all the files under the root directory of the phone:

obexftp -b 8C:BE:BE:C5:2C:C7 -c / -l

The following commands downloaded "/Adnroid/djaof.dll" from the phone to the NanoPi:

obexftp -b 8C:BE:BE:C5:2C:C7 -c /Android -g djaof.dll

The following commands uploaded "hello.txt" from the NanoPi to the "/Android" directory of the phone

obexftp -b 8C:BE:BE:C5:2C:C7 -c /Android -p hello.txt

Setup iBeacon Transmitter

The iBeacon technology enables smartphones, tablets and other devices to perform actions when in close proximity to an iBeacon transmitter. Please run the following commands to setup a NanoPi to an iBeacon transmitter:

hciconfig hci0 up
hciconfig hci0 leadv 3
hciconfig hci0 noscan
hcitool -i hci0 cmd 0x08 0x0008 1E 02 01 1A 1A FF 4C 00 02 15 63 6F 3F 8F 64 91 4B EE 95 F7 D8 CC 64 A8 63 B5 00 00 00 00 C8

If this is setup correctly on a NanoPi it will broadcast its presence to nearby portable electronic devices. If a nearby Android device or iPhone has the "locate Beacon" application installed it will be able to measure the distance between itself to the NanoPi. If you want enable the indoor positioning function you will need to setup multiple iBeacon transmitters.

Communicate with Cellphone via Bluetooth BLE

The function requires a BLE service be started on the NanoPi.
The BLE service's code is open source. Please follow the steps below to get it:

git clone

Please run the following script which will generate a "nanopi_ble_server" executable if it is successful:


We assume your cross compiler is installed at "/opt/FriendlyARM/toolschain/4.5.1/bin/arm-linux-gcc". If it is not installed under this directory you need to make changes in the script accordingly.
After a "nanopi_ble_server" is generated please copy it to the NanoPi and execute the following commands:

hciconfig hci0 down
service bluetooth stop
chmod 755 nanopi_ble_server

Now please install a BLE Scanner application on an Android phone or a Lightblue application on an iPhone which will be used to test the function.
We have an open source Android Demo on GitHub too,It is under "android/BLETest". This demo shows how a cellphone communicates(transmits data to/receives data from) with the NanoPi via BLE.

NanoPi's output messages are as follows:

Install Debian Packages

We provide a Debian Jessie image. You can install Jessie's packages by commanding "apt-get". If this is your first installation you need to update the package list by running the following command:

apt-get update

Or you can try a complete command set

apt-get update
apt-get dist-upgrade
apt-get autoremove

You can install your preferred packages. For example if you want to install an FTP server you can do this:

apt-get install vsftpd

Note: you can change your download server by editting "/etc/apt/sources.list". You can get a complete server list from [3]. You need to select the one with "armel".

Make OS Image

Install Cross Compiler

Download and untar cross compiler file:

git clone
tar xvzf prebuilts/gcc/arm-linux-gcc-4.4.3.tar.gz -C /

It will ease your future development work if you add compiler's path to "PATH". You can do it by first opening "~/.bashrc" and then appending the following lines:

export PATH=/opt/FriendlyARM/toolschain/4.4.3/bin/:$PATH

Run "~/.bashrc" to make your changes in effect right away:

. ~/.bashrc

We assume you would use a 32-bit compiler. However if your host runs a 64-bit Linux you need to install some extra packages. For example if your host runs a Debian 8 Jessie desktop 64 bit system you will need to install the following packages:

dpkg --add-architecture i386
apt-get update
apt-get install build-essential gcc-multilib rpm libstdc++6:i386 libgcc1:i386 zlib1g:i386 libncurses5:i386

Compile U-Boot

Download U-Boot source code and compile it. Please note it is in the branch "nanopi":

git clone
cd uboot_nanopi
git checkout nanopi
make nanopi_config

After your compilation succeeds a u-boot.bin will be generated. If you want to test it please flash it to your MicroSD card by running the "" script.
If your SD card's device name is "/dev/sdd" please run the following command as "root":

./ /dev/sdd

Note: this operation will remove all the data in the SD card.

Compile Linux kernel

Compile Kernel

Please download kernel source code and compile it

git clone
cd linux-4.x.y
git checkout nanopi-v4.1.y
make nanopi_defconfig
touch .scmversion

The kernel that the NanoPi uses is "nanopi-v4.1.y". Please make sure you get the correct branch. After your compilation succeeds a new file "arch/arm/boot/zImage" will be generated

Compile Kernel Modules

In general kernel compilation generates kernel modules such as ipv6, netfilter and etc. If you want to add your own modules to the kernel or you changed your kernel configurations you need to recompile these new modules and pack them as a new "kernel-modules.tgz" to replace the corresponding file "basefs/kernel-modules.tgz" in "Rootfs"
please run the following commands as root to install ".ko" to /tmp/nanopi-modules:

make INSTALL_MOD_PATH=/tmp/nanopi-modules modules_install

Please strip your kernel modules and create a new package

cd /tmp/nanopi-modules/lib/
find . -name \*.ko | xargs arm-linux-strip --strip-unneeded
tar czvf kernel-modules.tgz modules/

If you want to test your newly generated kernel modules you can copy them to your MicroSD card's "rootfs/lib": We assume your MicroSD card was already mounted to "/media/fa/NANOPI" please run the following commands as root:

rm -rf /media/fa/NANOPI/lib/modules/
tar xzvf kernel-modules.tgz -C /media/fa/NANOPI/lib/

Make File System

File System for Debian

By default we install a Debian system to the NanoPi, which can be obtained from the following repository:

git clone
cd sd-fuse_nanopi/prebuilt/
ls -l rootfs.tgz

If you want to customize it you can uncompress "rootfs.tgz", edit its components and tar it. Here is an example showing how you can do it:

tar xzf rootfs.tgz 
dpkg -i --force-all --root=./rootfs /tmp/qtembedded-4.8.5_armel.deb 
tar czf rootfs.tgz rootfs

File System for Rabbit Linux

Another Linux system we provide is Rabbit Linux which is open source. You can work on it as "root" by following the steps below:

git clone
cd rootfs_nanopi
git checkout nanopi
make && make install && make strip

If the compilation is successful you will observe the following messages:

RootFS (core) successfully installed to:
Copyright 2015 FriendlyARM (

The information above indicates that the generated file system is located under "/tmp/FriendlyARM/nanopi/rootfs". We will make it a package by running the following commands:

cd /tmp/FriendlyARM/nanopi
tar czvf rootfs.tgz rootfs/

Make an Installation MicroSD Card with Your Own Files

Make Your Own System

Please download the SD card fuse utility and switch to the correct "master" branch:

git clone
cd sd-fuse_nanopi
git checkout master

Under "sd-fuse_nanopi" there is a "prebuilt" which contains the files that a system needs:
Bootloader: u-boot.bin
Kernel Command Parameters: sdenv.raw
Linux Kernel: zImage
File System Package: rootfs.tgz

You can replace one or multiple of these files with the ones you generated on your own in the previous steps and then run the following command to flash them to your MicroSD card. Please note that you need to run these commands under the "sd-fuse_nanopi" directory.

./ /dev/sdx

(Note: please replace /dev/sdx with your SD card's device name)

After it is done you can play with your new OS with this card.

Change U-Boot Environment Variables

After you boot your NanoPi you can check the U-Boot environment variables by running the following command:

fw_printenv bootargs

If you want to change variables (e.g. adding an LCD variable) you can do it this way:

fw_setenv bootargs root=/dev/mmcblk0p2 rootfstype=ext4 init=/sbin/init console=ttySAC0,115200 lcd=S70

If you want to port an existing SD card's all environment variables you can to insert it to a host and export its environment variables to a new sdenv.raw by running the following commands and then replace the "prebuilt/sdenv.raw" with this new file:

cd sd-fuse_nanopi
./ /dev/sdd
cp sdenv.raw prebuilt/

Comments on SD Card's "RAW" File

There is a known issue with the S3C2451: when iROM boots with SDHC card, calculated card size is smaller than original card size, exactly 1024 blocks so SDHC card has additional reserved blocks(512Kbyte). The S3C2451's iROM reads a bootloader from the end of an SD card. The results in an issue that when the iROM reads a regular SD card and an SDHC card of the same size it will get different positions. In addition different SD cards have different sizes. Therefore it is impossible to create a universal RAW file for all SD cards.
If you have multiple SD cards of the same size and one of them is flashed with a complete system you can use "dd" under Linux to read its data and save it as a RAW file and then dump it to all the other SD cards.
For an SD card whose size is greater than 8 GB it takes much longer time to write a RAW file to it. On general our rootfs is only about 23 MB it will be much faster to run a script file making an SD card.

Related Links

Connect Camera

Connect TFT LCD

The NanoPi can work with FriendlyARM's LCDs: H43,S70,A70,W50,A97,L80,G10,A56,W101,W35,P43,P35,TD35.

Please follow the steps below:
1) If you connect your NanoPi to a PC host via a mini USB cable its power may not be enough and you will need to connect an additional 5V 2A power to the board's GPIO's VDD_5V and DGND;
2) You need to add an LCD variable in U-boot. For example if you want to connect your NanoPi to an S70 LCD you can do it this way:

Firstly list the current environment variables:

fw_printenv bootargs

Here is the list
bootargs=root=/dev/mmcblk0p2 rootfstype=ext4 init=/sbin/init console=ttySAC0,115200

Append "lcd=S70" to "bootargs=" and reset the list with "fw_setenv"

fw_setenv bootargs root=/dev/mmcblk0p2 rootfstype=ext4 init=/sbin/init console=ttySAC0,115200 lcd=S70

Reboot your board you will see Debian on the LCD.

Download Qt and tslib Packages:

apt-get update
apt-get install qtembedded
apt-get install friendlyarm-tslib

The qtemebdded is the library Qt4 relies on. The friendlyarm-tslib is the library touch functions and screen calibration rely on.

Run Qt Sample Application:

. /usr/bin/setqt4env
/usr/local/Trolltech/QtEmbedded-4.8.5-arm/examples/tetrix -qws

The setqt4env script sets the environmental variables which Qt and tslib rely on. If it is run on a platform for the first time a screen calibration GUI will be launched. Users need to go through a five-point calibration process to calibrate the screen.
The tetrix application is a game developed in Qt4 and it runs as follows.
Nanopi with s70.jpg

Connect Matrix DIY Modules

Matrix - Buzzer

NanoPi Applications

4.3" Mini Computer

Wireless Intelligent Vehicle