FriendlyCore (based on ubuntu-core with Qt)

From FriendlyARM WiKi
Jump to: navigation, search


Download Image Files

You can click this url to download an image file for a board on the board's download page.

Work with FriendlyCore


FriendlyCore is a light Linux system without X-windows, based on ubuntu core, It uses the Qt-Embedded's GUI and is popular in industrial and enterprise applications.

Besides the regular Ubuntu core's features our FriendlyCore has the following additional features:

  • it supports our LCDs with both capacitive touch and resistive touch(S700, X710, HD702, S430, HD101 and S70)
  • it supports WiFi
  • it supports Ethernet
  • it supports Bluetooth and has been installed with bluez utilities
  • it supports audio playing
  • it supports Qt5.9 EGLES and OpenGL ES1.1/2.0 (Only for S5P4418/S5P6818)

FriendlyCore's User Accounts

  • If your board is connected to an HDMI monitor you need to use a USB mouse and keyboard.
  • If you want to do kernel development you need to use a serial communication board, ie a PSU-ONECOM board, which will allow you to operate the board via a serial terminal.Here is a setup where we connect a board to a PC via the PSU-ONECOM and you can power on your board from either the PSU-ONECOM or its MicroUSB:

For example, NanoPi-M1:
You can use a USB to Serial conversion board too.
Make sure you use a 5V/2A power to power your board from its MicroUSB port:
For example, NanoPi-M1:

  • FriendlyCore User Accounts:

Non-root User:

   User Name: pi
   Password: pi


   User Name: root
   Password: fa

The system is automatically logged in as "pi". You can do "sudo npi-config" to disable auto login.

  • Update packages
$ sudo apt-get update

Configure System with npi-config

The npi-config is a commandline utility which can be used to initialize system configurations such as user password, system language, time zone, Hostname, SSH switch , Auto login and etc. Type the following command to run this utility.

$ sudo npi-config

Here is how npi-config's GUI looks like:

Extend TF Card's Section

When FriendlyCore is loaded the TF card's section will be automatically extended.You can check the section's size by running the following command:

$ df -h


You can use the NetworkManager utility in FriendlyCore to manage its network. You can run "nmcli" in the commandline utility to start it. Here are the commands to start a WiFi connection:

  • Check device list
sudo nmcli dev

Note: if the status of a device is "unmanaged" it means that device cannot be accessed by NetworkManager. To make it accessed you need to clear the settings under "/etc/network/interfaces" and reboot your system.

  • Start WiFi
sudo nmcli r wifi on
  • Scan Surrounding WiFi Sources
sudo nmcli dev wifi
  • Connect to a WiFi Source
sudo nmcli dev wifi connect "SSID" password "PASSWORD"

The "SSID" and "PASSWORD" need to be replaced with your actual SSID and password.If you have multiple WiFi devices you need to specify the one you want to connect to a WiFi source with iface
If a connection succeeds it will be automatically setup on next system reboot.

For more details about NetworkManager refer to this link: Use NetworkManager to configure network settings

  • Use USB WiFi

Our OS system has support for popular USB WiFi drivers. Many USB WiFi modules are plug and play with our system. Here is a list of models we tested;

Number Model
1 RTL8188CUS 802.11n WLAN Adapter
2 RT2070 Wireless Adapter
3 RT2870/RT3070 Wireless Adapter
4 RTL8192CU Wireless Adapter
5 mi WiFi mt7601

Ethernet Connection

If a board is connected to a network via Ethernet before it is powered on it will automatically obtain an IP with DHCP activated after it is powered up. If you want to set up a static IP refer to: Use NetworkManager to configure network settings


If your board has an onboard bluetooth module you can search for surrounding bluetooth devices by running the following command:

hcitool scan

You can run "hciconfig" to check bluetooth's status.

Playing Audio

You can play an audio file by running the following command:

aplay -t raw -c 2 -f S16_LE -r 44100 /root/test.pcm

HDMI Audio Output

Our system's default audio output is the 3.5mm audio jack. You can turn on the HDMI audio by editing the /etc/asound.conf file:

pcm.!default {
    type hw
    card 1
    device 0
ctl.!default {
    type hw
    card 1

card 0 points to the 3.5mm audio jack and card 1 points to the HDMI audio. You need to save your changes and reboot your system to make your changes take effect.

Connect to USB Camera(FA-CAM202)

The FA-CAM202 is a 200M USB camera.
Refer to this link for more details on how to connect to a FA-CAM202: Connect NanoPi M1 to DVP Camera CAM500B

Develop Qt Application

Please refer to: How to build Qt application

Setup Program to AutoRun

You can setup a program to autorun on system boot with npi-config:

sudo npi-config

Go to Boot Options -> Autologin -> Qt/Embedded, select Enable and reboot.

Only Support S5P4418/S5P6818 Platform

Run Qt5.9 Demo with GPU acceleration

Run the following command

$ sudo qt5demo


Run Qt5.9 Demo with OpenGL

Run the following command

. setqt5env
cd /examples/opengl/qopenglwidget

For more Qt5.9 examples, please go to:
cd $QTDIR/examples/

Play HD Video with Hardware-decoding

gst-player is console player, it base on GStreamer, support VPU with Hardware-decoding:

sudo gst-player /home/pi/demo.mp4

The equivalent gsteamer command is as follows:

sudo gst-launch-1.0 filesrc location=/home/pi/demo.mp4 ! qtdemux name=demux demux. ! queue ! faad ! audioconvert ! audioresample ! alsasink device="hw:0,DEV=1" demux. ! queue ! h264parse ! nxvideodec ! nxvideosink dst-x=0 dst-y=93 dst-w=1280 dst-h=533

Connect to DVP Camera CAM500B

The CAM500B camera module is a 5M-pixel camera with DVP interface. For more tech details about it you can refer to Matrix - CAM500B.
Under Debian/Ubuntu a camera utility "nanocams" is available for previewing 40 frames and picture taking. You can try it by following the commands below

sudo nanocams -p 1 -n 40 -c 4 -o IMG001.jpg

For more details about the usage of the nanocams run "nanocams -h". You can get its source code from our git hub:

git clone

Power Off and Schedule Power On

“PMU Power Management” feature helps us to auto power on the board at a specific time, it is implemented by a Cortex-M0 MCU, support software power-off, and RTC alarm power-up functions.

Here’s a simple guide:
Turn on automatically after 100 seconds. (Time must be greater than 60 seconds.):

$ sudo echo 100 > /sys/class/i2c-dev/i2c-3/device/3-002d/wakealarm

After setting up the automatic boot, turn off board with the 'poweroff’ command:

$ sudo poweroff

Cancel automatic boot:

$ sudo echo 0 > /sys/class/i2c-dev/i2c-3/device/3-002d/wakealarm

Query the current settings, in the front is current time, followed by the time of automatic booting: If no automatic boot is set, it will display "disabled”.

$ sudo cat /sys/class/i2c-dev/i2c-3/device/3-002d/wakealarm

Note that some older versions of hardware may not support this feature, if you don't see this file node in your system:
your board may be it does not support this feature.

Only Support H3 Platform

Run Qt Demo

Run the following command

$ sudo /opt/QtE-Demo/

Here is what you expect to observe. This is an open source Qt Demo:

Connect to DVP Camera CAM500B

Note: this function is only supported in Linux-3.4.y
The CAM500B camera module is a 5M-pixel camera with DVP interface. For more tech details about it you can refer to Matrix - CAM500B.
connect your H3 board to a CAM500B. Then boot OS, connect your board to a network, log into the board as root and run "mjpg-streamer":

$ cd /root/mjpg-streamer
$ make
$ ./

The mjpg-streamer application is an open source video steam server. After it is successfully started the following messages will be popped up:

 i: Using V4L2 device.: /dev/video0
 i: Desired Resolution: 1280 x 720
 i: Frames Per Second.: 30
 i: Format............: YUV
 i: JPEG Quality......: 90
 o: www-folder-path...: ./www/
 o: HTTP TCP port.....: 8080
 o: username:password.: disabled
 o: commands..........: enabled

In our case the board's IP address was We typed in a browser and were able to view the images taken from the camera's. Here is what you would expect to observe:
The mjpg-streamer soft-encodes data with libjpeg and you can hard-encode its data with ffmpeg which will greatly increase CPU's efficiency and speed up data encoding:

$ ffmpeg -t 30 -f v4l2 -channel 0 -video_size 1280x720 -i /dev/video0 -pix_fmt nv12 -r 30 \
        -b:v 64k -c:v cedrus264 test.mp4

By default it records a 30-second video. Typing "q" stops video recording. After recording is stopped a test.mp4 file will be generated.

Check CPU's Working Temperature

You can use the following command to read H3's temperature and frequency


Check System Information with Rpi-Monitor

Our OS contains the Rpi-Monitor utility with which users can check system information and status.
In our case our board's IP was and we typed the following IP in a browser:

We were directed to the following page:
Users can easily check these system information and status.

Access GPIO Pins/Wirings with WiringNP

The wiringPi library was initially developed by Gordon Henderson in C. It contains libraries to access GPIO, I2C, SPI, UART, PWM and etc. The wiringPi library contains various libraries, header files and a commandline utility:gpio. The gpio utility can be used to read and write GPIO pins.
FriendlyElec integrated this utility in FriendlyCore system allowing users to easily access GPIO pins. For more details refer to WiringNP WiringNP

Only Support H5 Platform

Run Qt Demo

Run the following command

$ sudo /opt/QtE-Demo/

Here is what you expect to observe. This is an open source Qt Demo:

Only Support S905 Platform

Run Qt Demo

Run the following command

$ sudo /opt/QtE-Demo/

Here is what you expect to observe. This is an open source Qt Demo:

Only Support H2 Platform

Boot System from SSD

A NanoPi-Duo can be booted from the SSD on a Mini Shield for NanoPi Duo. Booting OS from an SSD has the following benefits:
1) faster read/write;
2) much longer life time than a TF card;
3) more reliable than booting from a TF card;

You can install an OS to SSD by using the npi-config utility. Here are the steps to follow:

sudo npi-config

Enter the "Boot Options" menu, go to "Boot device" and you will see two options:
1) D1 Hard drive
2) D2 TF card
Select "D1 Hard drive" and proceed with its prompts.
Select "D2 TF card" to boot OS from a TF card.

If your npi-config doesn't have a "Boot device" menu it might be that your npi-config is out of date and you can update it by selecting "Update" in the menu.

Work with LCD

If you connect your board to an LCD with capacitive touch panel in general that LCD's calibration is not required. However if your LCD is one with resistive touch panel you will have to do calibration which is triggered by running "/usr/bin/setqt4env" on your first system booting.

If you want to re-calibrate your LCD with resistive touch panel you need to delete the calibration file by using the following command:

rm /etc/pointercal

After you reboot your system you will enter the calibration process.

Q & A

  • When I compile my Qt program I get a message complaining that linking to libraries such as libts and libz failed

Your arm-linux-gcc 4.9.3 may not include these library files. You need to try downloading the compiler again.

  • Where should I get FriendlyCore's source code

We used the bin file released by UbuntuCore's official site. You can get its source code from

Update Log


  • Released English version


  • Added sections 6.1, 6.2 and 6.3


  • Updated section 4